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Abstract—Memory caches are being used aggressively in today’s data analytics systems such as Spark, Tez, and Piccolo. The
significant performance impact of caches and their limited sizes call for efficient cache management in data analytics clusters. However,
prevalent data analytics systems employ rather simple cache management policies—notably Least Recently Used (LRU) and Least
Frequently Used (LFU)—that are oblivious to the application semantics of data dependency, expressed as directed acyclic graphs
(DAGs). Without this knowledge, cache management can, at best, be performed by “guessing” the future data access patterns based on
history, which frequently results in inefficient, erroneous caching with a low hit rate and a long response time. Worse still, the lack of data
dependency knowledge makes it impossible to retain the all-or-nothing cache property of cluster applications, in that a compute task
cannot be sped up unless all the dependent data has been kept in the main memory.

In this paper, we propose a novel cache replacement policy, named Least Reference Count (LRC), which exploits the application’s data
dependency information to optimize the cache management. LRC keeps track of the reference count of each data block, defined as the
number of dependent child blocks that have not been computed yet, and always evicts the block with the smallest reference count.
Furthermore, we incorporate the all-or-nothing requirement into LRC by coordinately managing the reference counts of all the input data
blocks for the same computation. We demonstrate the efficacy of LRC through both empirical analysis and cluster deployments against
popular benchmarking workloads. Our Spark implementation shows that, the proposed policies well address the all-or-nothing
requirement and significantly improve the cache performance. Compared with LRU and a recently proposed caching policy called
MEMTUNE, LRC improves the caching performance of typical workloads in production clusters by 22% and 284%, respectively.

Index Terms—Cloud computing, data analytics system, cache management, dependency-awareness, all-or-nothing caching.

F

1 INTRODUCTION

Data analytics systems are undergoing a fundamental shift
to in-memory computation. The ever-growing demand for
interactive, iterative data analytics and the stalling speed
of disk I/O force the system to cache a large volume of
data in memory to provide low latency [3]–[6]. Despite the
increasing availability of high-RAM machines, the size of
in-memory caches remains orders-of-magnitude smaller than
that of the data. Efficient cache management, therefore, plays
a key role in large-scale data analytics systems.

Caching is a classical problem that has been well studied
in storage systems [6], [7], databases [8], [9], operating sys-
tems [10], and web servers [11], [12]. Nevertheless, caching
in data analytics clusters has two defining aspects that
differentiate it from that in those previous systems. First,
data analytics applications have clear semantics of data
dependency, expressed as directed acyclic graphs (DAGs) of
compute tasks. The DAG is readily available to the cluster
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scheduler upon the submission of an application. The DAG
sketches out the application’s task execution plan which
dictates the future data access pattern, i.e., how the data will
be computed and reused as input of descendant tasks. For
example, Fig. 1 depicts the DAG of a Spark job, where the
four map tasks respectively take four data blocks as input and
transform them to four intermediate datasets, which are then
fed to the two zip tasks to compute the final output.

Second, caching in data analytics clusters is characterized
by the all-or-nothing requirement at two levels. At a low level,
for a compute task with multiple input data blocks—which
we call peers in this paper—the task can only be sped up
when all of those peers are cached in memory. At a high
level, for a compute stage where multiple tasks are scheduled
in parallel, the stage completion time can only be reduced
when all those tasks get sped up by caching—meaning, all
the input data blocks in that stage should be kept in memory.
In Fig. 1, blocks A2 and C2 (blocks B2 and D2) are input
peers of a zip task to compute block E (block F ). Caching
only one peer provides no benefit because the task will still
need to read the other peer from disk. Furthermore, if the
two parallel zip tasks are scheduled in the same stage, the
stage completion time cannot be reduced unless all four
input blocks A2, B2, C2, and D2 are cached in memory.

However, existing caching policies in prevalent data
analytic systems [4], [13], [14] are oblivious to the data
dependency DAGs of applications. Instead, they predict
application-specific data access patterns based on the his-
torical information, notably the frequency and recency of
data accesses. For example, Spark [4] and Tez [15] employ
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Fig. 1: The data dependency DAG of an example application.
Each block represents a dataset. Two of the input blocks, A1

and B1, are cached in memory, while the other two input
blocks, C1 and D1, are stored on disk. Blocks A2, B2, C2,
and D2 are intermediate datasets derived from each of the
four input datasets via mapping. Block E (F ) is the final
result derived from both A2 and C2 (B2 and D2).

the classical LRU policy to evict data blocks that are least
recently used in the presence of high memory pressure. As we
shall show in Sec. 2, using recency and frequency to predict
future data accesses can be highly inaccurate and may result
in a low cache hit rate. Moreover, without the knowledge
of the data dependency DAGs, it is not possible to meet the
all-or-nothing caching requirement.

In this paper, we investigate how the application seman-
tics of data dependency should be exploited to optimize
cache management. Ideally, the solution should take full
use of the DAG information and can be easily implemented
for a wide range of in-memory analytics frameworks. Our
response is a novel dependency-aware cache management
policy, which we call Least Reference Count (LRC). The
reference count is defined, for each data block, as the
number of unmaterialized child blocks derived from it, which
is equivalent to the number of tasks whose computations
depend on that block but have not been executed yet. As
the name suggests, the LRC policy always evicts the data
block whose reference count is the smallest. With minor
modifications, the LRC policy can easily meet the all-or-
nothing caching requirement at both the task and stage
levels, using conservative and aggressive eviction strategies,
respectively (details in Sec. 3.2).

LRC provides benefits over existing cache management
policies in four aspects. First, LRC can timely detect inactive
data blocks with zero reference count. Such blocks are
unlikely to be used again in the remaining computations1 and
can be safely evicted from the memory. Second, compared
with the historical information such as the block access
recency and frequency, the reference count serves as a more
accurate indicator of the likelihood of future data access.
Intuitively, the higher the reference count a block has, the
more child blocks depend on it, and the more likely the
block is needed in the downstream computation. We show
through empirical studies in Sec. 2 that caching data blocks
with the highest reference count increases the hit ratio by up
to 119% as opposed to caching the most recently used data.
Third, LRC can be generalized to meet the all-or-nothing
requirements by coordinately managing the reference counts

1. Unless re-computation is needed due to machine failures or
stragglers.

of data blocks at task and stage levels. Finally, the fact that
the reference count can be accurately tracked at runtime with
negligible overhead makes LRC a lightweight cache manager
for data analytics systems.

We have prototyped LRC as a pluggable memory man-
ager in Spark (details in Sec. 4). To evaluate the efficacy
of LRC in production clusters, we conducted experiment
through Amazon EC2 deployment against SparkBench [16], a
popular benchmarking suite for Spark. Experimental results
show that LRC retains the same application performance
using only 40% of cache space as compared to LRU, the
default cache management policy used in Spark. When
operating with the same memory footprint, LRC is capable
of reducing the application runtime by up to 60%. Our
implementation can be easily adapted to other DAG-based
data analytics systems and can also be extended to multi-
tenant cache sharing systems such as Alluxio [17].

Two preliminary versions of this article have appeared
in [1] and [2]. In this version, we make substantial im-
provements over the two previous submissions. First, we
have obtained a deeper understanding of the all-or-nothing
caching requirement of data analytics systems at two levels
(Sec. 2.4), i.e., the task and stage level requirements, which
generally applies to all DAG-based analytics systems. In
comparison, the conference papers either do not respect it
at all [1] or only acknowledge the task-level requirement [2].
Second, we have strengthened the evaluation of LRC using
trace-driven simulations (Sec. 5.3) with the recently released
production trace [18] from the Alibaba Group. We have
demonstrated the prominent performance advantages of
LRC policies against LRU and another related work MEM-
TUNE [19] in production workloads. We have also open-
sourced our simulator [20] for ease of other researchers
to test their own cache policies against the Alibaba trace.
Third, we have provided motivating examples as well as
extensive experimental results (Sec. 5.1), demonstrating the
need to take care of the all-or-nothing requirement at two
levels. Fourth, we have extended the LRC cache manager
to support the two-level caching requirement in practical
systems (Sec 4.1) and provided operational guidance on
how to switch between the two based on the available
resources. Lastly, we have expanded the discussions on the
implementation overhead of LRC (Sec. 4.2) and covered more
related works in the literature review (Sec. 6).

2 INEFFICIENCY OF EXISTING CACHE MANAGE-
MENT POLICIES

In this section, we present the background information and
motivate the need for a new cache management policy
through empirical studies. Unless otherwise specified, we
shall limit our discussion to the context of Spark [4]. However,
nothing precludes applying the discussion to other data
analytics frameworks such as Tez [15] and Storm [13].

2.1 Semantics of Data Dependency

Cluster applications such as machine learning, web search,
and social network typically consist of complex workflows,
which are specified as directed acyclic graphs (DAGs) of
compute tasks. For example, in Spark, data is managed
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through an easy-to-use memory abstraction called Resilient
Distributed Datasets (RDDs) [4]. An RDD is a collection of
immutable datasets partitioned across a group of machines.
Each machine stores a subset of RDD partitions (blocks),
either in-memory or on-disk. An RDD can be created directly
from a file in a distributed storage system (e.g., HDFS [21],
Amazon S3 [22], and Tachyon [6]), or it can be derived
from other RDDs through a user-defined transformation.
This process leads to a data flow model, in which the
programmer defines how the RDDs are transformed from one
to another. The programmer can use RDDs in actions, which
are operations that either return a value to the application,
or export data to a stable storage system. Spark computes
RDDs lazily, until the first time they are used in actions. An
action then triggers the execution of a compute job along with
its DAG of RDDs. Fig. 1 illustrates such a job DAG in Spark.

Whenever a job is submitted to the Spark driver, its DAG
of RDDs becomes readily available to a driver component,
DAGScheduler [4]. The DAGScheduler then traverses the job
DAG using depth-first search (DFS) and continuously sub-
mits runnable tasks (i.e., those whose parent RDDs have all
been computed) to the cluster scheduler to compute unmate-
rialized RDDs. In particular, the tasks used to compute blocks
from the same RDD form a stage. The cache manager can
easily retrieve the DAG information from the DAGScheduler.
This information sheds light into the underlying data access
patterns, based on which the cache manager can decide
which RDD block should be kept in memory.

It is worth emphasizing that the availability of data
dependency DAGs of compute jobs is not limited to Spark,
but generally found in other parallel frameworks such as
Apache Tez [15]: the Tez programming API allows the
programmer to explicitly define the workflow DAG of an
application, which is readily available to the Tez scheduler
beforehand.

2.2 Recency- and Frequency-Based Cache Manage-
ment

Despite the availability of the application’s DAG, prevalent
cache management policies are agnostic to this data depen-
dency information. Instead, they simply predict data access
patterns based on the historical information, namely the
recency and frequency of data accesses.

• Least Recently Used (LRU): The LRU policy [23]
makes room for new data by evicting the cached
blocks that have not been accessed for the longest
period of time. LRU is the de facto cache management
policy employed in today’s in-memory data analytics
systems [4], [6], [13], [15]. It predicts the access pattern
based on the short-term data popularity: the recently
accessed data is assumed to be likely used again in
the near future.

• Least Frequently Used (LFU): The LFU policy [10]
keeps track of the access frequency of each data block,
and the one that has been accessed the least frequently
has the highest priority to be evicted. Unlike LRU,
LFU predicts the access pattern based on the long-
term data popularity, meaning the frequently accessed
data is assumed to be likely used again in the future.

TABLE 1: An overview of SparkBench suite [16].

Application Type Workload

Machine Learning

Logistic Regression
Support Vector Machine (SVM)

Matrix Factorization

Graph Computation

Page Rank
SVD Plus Plus
Triangle Count

SQL Queries
Hive

RDD Relation

Streaming Workloads
Twitter Tag
Page View

Other Workloads

Connected Component
Strongly Connected Component

Shortest Paths
Label Propagation
Pregel Operation

Both LRU and LFU are easy to implement. However,
their obliviousness to the application semantics of data
dependency frequently results in inefficient, even erroneous,
cache decisions, as we show next.

2.3 Data Access Pattern
To illustrate the need for being dependency-aware, we char-
acterize the data access patterns and their correlations to the
dependency DAGs in typical analytics benchmarks through
empirical studies. We show that simply relying on the recency
and frequency information for cache management would
waste a large portion of memory to persist inactive data that
will never be used in downstream computations.

Methodology: We ran SparkBench [16], a comprehensive
benchmarking suite, in an Amazon EC2 [24] cluster con-
sisting of 10 m4.large instances. We measured the memory
footprints and characterized the data access patterns of 15
applications in SparkBench, including machine learning,
graph computation, SQL queries, streaming, etc. Table 1
summarizes the workload suite we used in our empirical
studies.

Data Access Patterns: Our experiments have identified two
common access patterns across the benchmark applications.

1) Most data goes inactive quickly and will never be referenced
again. Fig. 2 shows the distribution of inactive data cached
in memory throughout the execution of 15 applications. We
find that the amount of inactive data accounts for a large
portion of memory footprint during the execution, with the
median and 95th percentile being 77% and 99%, respectively.
The dominance of inactive data blocks is in line with Spark’s
data flow model where the intermediate datasets are likely
to be consumed by “nearby” computations in the DAG, and
therefore have short life cycles. Keeping inactive data long
in memory wastes cache spaces, inevitably resulting in a low
hit rate.

2) Data goes inactive in waves, in alignment with the
generation of new data. We further micro-benchmarked the
memory footprint of total generated data against that of
inactive data blocks cached during the execution of each
application. Fig. 3 shows the results for a representative
application that computes the connected components of a
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Fig. 2: Distribution of inactive data cached during the
execution of SparkBench [16].
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Fig. 3: Memory footprints of intermediate data generated
and inactive blocks cached during the execution of Connected
Component, an application in SparkBench [16].

given graph. The x-axis measures the execution progress,
in terms of the number of tasks completed; the y-axis
measures the memory footprint, i.e., the amount of cached
data normalized by the memory capacity. We see in Fig. 3
that the data is produced and consumed in waves, where
the boundaries between two waves are well aligned with
the submission of new jobs in the dependency DAG. This
clearly indicates that when a child RDD has been computed,
its parents are likely to go inactive.

Inefficiency of existing cache policies: We learn from the
empirical studies that the key to efficient cache replacement
is to timely evict inactive data blocks. Unfortunately, neither
LRU nor LFU is capable of doing so. We refer back to the
example of Fig. 1, where each block is of a unit size, and the
memory cache can persist two blocks in total. We start with
LRU. Without loss of generality, assume that the two blocks
A1 and B1 are already in memory at the beginning, with
the recency rank as B1 > A1, i.e., from the most-recently-
used (MRU) position to the least-recently-used (LRU). Fig. 4
illustrates what happens with the LRU policy when data
block A2 is materialized and then cached. Since block A2 is
derived from A1, the latter is firstly referenced as an input
at time t1 and is elevated to the MRU position. Soon later,
block A2 has been materialized at time t2 and is cached at
the MRU position, pushing the least-recently-used block B1

out of the memory. However, this would incur expensive
tear-and-wear cost, in that block B1 will soon be reloaded

B1

A1

!"

A1

Time

MRU

A1

B1

LRU

Reference A1 Produce A2

t1 t2

Fig. 4: An example showing that applying LRU in the
example of Fig. 1 is unable to timely detect and evict inactive
data. The cache capacity is two units.
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Fig. 5: DAG of a Spark job with only one zip stage and three
RDDs A, B and C. Each block in RDD C depends on two
corresponding blocks from RDD A and RDD B.

in memory to compute block B2. In fact, we see that the
optimal decision is to evict block A1, as it becomes inactive
and will never be used again. This simple example shows
that LRU is unable to evict inactive data in time, but it has
to wait passively until the data demotes to the LRU position,
which may take a long time.

We note that the LFU policy suffers from a similar
problem. In the previous example, to cache block A2, the
LFU policy would also evict B1 while retaining block A1 in
memory, because block A1 has a historical access record (in
the computation of A2), but B1 does not.

This example demonstrates that recency- and frequency-
based cache replacement policies cannot timely evict inactive
data even in a simple scenario. In production clusters with
massive volumes of inactive data generated by multiple jobs,
the cache efficiency of LRU/LFU can only be worse.

2.4 All-or-Nothing Cache Requirement
Prevalent cache algorithms, be it recency- or frequency-based,
settle on the cache hit ratio as their primary optimization
objective. However, the cache hit ratio fails to capture the
all-or-nothing requirement of data-parallel tasks and may
not be directly linked to their computation performance.
The computation of a data-parallel task usually depends on
multiple data blocks, e.g., join, coalesce and zip in Spark
[25]. A task cannot be sped up unless all its dependent blocks,
which we call peers in this paper (e.g., block A2 and block C2

in Fig. 1), are cached in memory.

Methodology: To demonstrate the all-or-nothing property
in data analytics systems, we ran the Spark job with only
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Fig. 6: Total task runtime of the example job in Fig. 5, with
the cached RDD blocks increasing one at a time in the order
of A1, B1, A2, B2, . . . , A10, B10.

one zip stage in an Amazon EC2 cluster consisting of 10
m4.large instances [24]. The job DAG is illustrated in Fig. 5.
Each of the two RDDs A and B is configured as 200 MB. We
repeatedly ran the zip job in rounds. In the first round, no
data block is cached in memory. In each of the subsequent
rounds, we sequentially add one more block to the cache,
following the caching orders A1, B1, A2, B2, . . . , A10, B10.
Eventually, all 20 blocks were cached in memory in the final
round. In each round, we measured the cache hit ratio and
the total runtime of all 10 tasks.

The all-or-nothing requirement at two levels: Fig. 6 depicts
the total task runtime against the number of RDD blocks
cached in memory. We observe the all-or-nothing require-
ment at two levels: task and stage.

1) A compute task is only sped up when all of its input peer
blocks are cached in memory. As shown in Fig. 6, despite the
linearly growing cache hit ratio with more in-memory blocks,
the task completion time is notably reduced only after both
of the two peering blocks Ai and Bi have been cached.

2) For a compute stage where all the tasks are executed in
parallel, the stage gets sped up only when the dependent peers of all
the tasks are cached in memory. In our experiment, if the 10 zip
tasks are scheduled for parallel execution, the completion
time of the zip stage is bottlenecked by the slowest task.
Therefore, speeding up only a subset of the 10 tasks provides
no benefit. To reduce the runtime of the parallel-executed
zip stage, all of the 20 input blocks should be cached.

Inefficiency of existing cache policies: To meet the all-or-
nothing caching requirement, the algorithm should identify
which blocks are peers of each other, so that they can be
cached altogether as a whole. This information can only be
learned from the data dependency DAG. However, existing
cache policies, such as LRU and LFU, are oblivious to the DAG
information, and thus are unable to retain the all-or-nothing
property.

To summarize, simply relying on the historical infor-
mation, be it access recency or frequency, is incapable of
detecting inactive data in time and satisfying the all-or-
nothing requirement. Efficient cache management therefore
should factor in the semantics of data dependency DAG. We
show how this can be achieved in the next section.

3 DEPENDENCY-AWARE CACHE MANAGEMENT

In this section, we present a new cache management policy,
Least Reference Count (LRC). LRC is aware of the appli-
cation’s data dependency DAG. We incrementally develop
the LRC algorithm. We start with a simple baseline which
makes use of the DAG information without considering the
all-or-nothing caching requirement. We shall then generalize
the baseline to meet this requirement at different levels.

3.1 Least Reference Count (LRC): The Baseline Form
We begin with the definition of the reference count, based on
which we propose the LRC algorithm in its baseline form.

Definition 1 (Reference count). For each data block b, the
reference count is defined as the number of child blocks derived
from b, but not yet computed.

As a concrete example, we refer back to Fig. 1. Upon the
submission of the job DAG, blocks A1, B1, C1 and D1 all
have the same reference count 1, as each of them has only
one unmaterialized RDD block depending on it.

Definition 2 (Baseline LRC). The Least Reference Count (LRC)
policy keeps track of the reference count of each data block, and
whenever needed, it evicts the data block whose reference count
is the smallest.

Desirable properties: The baseline LRC algorithm has two
desirable properties that make it highly efficient.

First, with LRC, those inactive data blocks with zero
reference count can be quickly identified and evicted by the
algorithm. Continuing the example of Fig. 1, assume blocks
A1 and B1 are in memory at the beginning, and the cache is
full. Once block A2 has been computed, block A1 becomes
inactive with zero reference count and is thus safe to evict to
make room for block A2.

Second, compared to recency and frequency, a data
block’s reference count is a more accurate indicator of
its likelihood of future access. Intuitively, the higher the
reference count a block has, the more compute tasks depend
on it as an input, and the more likely the block is needed in
the downstream computation.

To validate this intuition, we ran SparkBench applications
on an Amazon EC2 cluster with 10 m4.large instances. Specif-
ically, whenever a data block is accessed, we respectively
measured the cache priority rank (in percentile) of the block in
terms of three metrics: the recency of last access, the historical
access frequency, and the reference count. A block that is top
ranked in terms of a certain metric (say, top 1% in terms of
recency) is likely persisted in memory if the corresponding
cache policy is used (say, LRU). Fig. 7 shows the CDF of the
measured ranks across all 15 SparkBench applications. We
see that the reference count consistently gives higher ranks
than the other two metrics, meaning it is the most accurate
indicator of which data will be accessed next. For example,
suppose that each data block is of a uniform size, and the
cluster’s memory can cache only 10% of the entire data
blocks. Caching the data blocks with the highest reference
count leads to the highest cache hit ratio (46%), which is
2.19× (46×) of that based on the recency (frequency).

Discussion. In real-world data analytics applications, the
intermediate blocks may differ in sizes. At the first glimpse,
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Fig. 7: Distribution of the cache priority ranks of accessed
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count. The workloads cover all SparkBench applications [16].

it seems that the block size should be taken into consideration
while determining the caching preferences. Noting that
the performance penalty (gain) of a cache miss (hit), i.e.,
I/O delay (speedup), is proportional to the block size, the
reference count directly measures the potential benefit of
caching each byte of the block. Therefore, to improve the
overall cache efficiency, there is no need to factor in the block
size for the ranking of caching priorities.

3.2 LRC for the All-or-Nothing Requirement

While the baseline LRC algorithm makes use of the data
dependency DAG, it does not explicitly address the all-
or-nothing caching requirement, which plays a key role in
speeding up data analytics applications. Fortunately, with
some minor modifications to the calculation of reference
count, the baseline algorithm can be easily generalized to
meet this requirement at different levels.

A toy example: In a cluster environment, depending on
the number of available compute slots, parallel tasks in a
compute stage are usually scheduled in “waves”. Intuitively,
the stage completion time can only be reduced when all tasks
scheduled in one wave are sped up simultaneously. We refer
back to the example in Fig. 1. Let TE and TF respectively
denote the computation time of materializing blocks E and
F . To see whether the computation time of the zip stage can
be effectively reduced by caching, we have to differentiate
between the following two cases.

Case-1: There is only one available compute slot in the
cluster for the zip stage. In this case, blocks E and F will be
computed sequentially in two “waves”, and the computation
time of the zip stage is Tzip = TE + TF . Therefore, speeding
up any of the two zip tasks—by caching its two input peers
(i.e., zipping blocks A2 and C2 to derive E, and B2 and D2

to derive F )—helps reduce the total computation time of the
zip stage. In other words, meeting the all-or-nothing caching
requirement at the task level is sufficient to speed up the
entire computation, as the two tasks cannot be executed in
parallel.

Case-2: There are two available slots in the cluster for
the zip stage, with which blocks E and F are computed
in parallel. In this case, the computation time of the zip
stage is bottlenecked by the slower one of the two tasks,
i.e., Tzip = max{TE , TF }, and speeding up only one task

brings no benefit. This requires the all-or-nothing caching
requirement to be satisfied at the stage level: to accelerate the
computation of the zip stage, all the four dependent blocks
A2, B2, C2, and D2 must be cached in memory.

Intuitions: From the toy example, we learned that the level
at which the all-or-nothing caching requirement should be
achieved depends on how tasks are scheduled. Unfortunately,
this is the runtime information that cannot be obtained a pri-
ori. Cluster scheduling is highly dynamic in production cloud
platforms, where multiple users and applications contend
for compute resources. In such a shared environment, it is
very hard, if not impossible, to predict how many slots will
be allocated to an application, and if those slots are sufficient
to accommodate all the parallel tasks of that application.

Given such an uncertainty, we propose two replacement
strategies, one conservative and the other aggressive, that
respectively achieve the all-or-nothing requirement at the
task and stage levels. The conservative strategy is pessimistic
about the available compute resources (e.g., Case 1 in
the previous example) and assumes that tasks are likely
to be scheduled in sequence. Based on this assumption,
the algorithm conservatively evicts data blocks, only when
caching them cannot speed up a single task. Through this
conservative eviction strategy, the algorithm expects to speed
up as many tasks as possible.

The aggressive strategy, on the other hand, makes an
optimistic assumption that the available slots are sufficient to
accommodate all the parallel tasks of a compute stage (e.g.,
Case-2 in the previous example). The algorithm hence strives
to achieve the all-or-nothing requirement at the stage level.
It aggressively evicts all the input blocks of a compute stage
whenever it is not possible to speed up all tasks of that stage.

With minor modifications to the definition of reference
count, the baseline LRC algorithm can be easily extended to
implement both replacement strategies.

LRC with conservative replacement: We start with the
conservative replacement that achieves the all-or-nothing
requirement at the task level. Intuitively, if an input block
of a task has been evicted, the task cannot be sped up. We
therefore have the following definition:

Definition 3. We say a compute task can be sped up if none of
its input blocks have been evicted, i.e., they are either cached in
memory or have not been materialized.

We redefine the reference count for each data block as the
number of unscheduled tasks that depend on it and can be sped
up. The LRC algorithm always evicts the data block with the
least reference count. As an illustrative example, we refer
back to Fig. 1 and assume that block A2 has been evicted
from the memory. As a result, the zip task used to derive
block E cannot be sped up, and the reference count of the
other input block C2 becomes 0. This suggests that block C2

should be evicted out of the memory as well, as caching it
cannot speed up any task.

LRC with aggressive replacement: We next present another
LRC alternative which aggressively evicts data blocks if the
all-or-nothing requirement cannot be met at the stage level.
Suppose that the cluster has a sufficient number of slots to
accommodate all parallel tasks of a compute stage, and the
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stage completion time is bottlenecked by the slowest task.
We have the following definition:

Definition 4. We say a compute stage can be sped up if all of its
unscheduled tasks can be sped up.

To achieve the all-or-nothing requirement at the stage
level, we redefine the reference count for each data block as
the number of uncompleted stages which depend on that block and
can be sped up. Intuitively, the higher the reference count of a
data block, the more stages that can be sped up by caching
that block. The LRC algorithm always evicts the data block
with the least reference count.

We refer back to Fig. 1 and assume parallel execution of
the two zip tasks. If block A2 is not cached in memory, the
reference counts of blocks B2, C2, and D2 are all 0 as caching
them cannot speed up the zip stage.

Discussion. Depending on the compute resources provi-
sioned in the cluster, the LRC algorithm should be configured
with conservative or aggressive replacement accordingly.
Intuitively, when the compute resources are heavily con-
tended, the conservative strategy is likely to outperform the
aggressive alternative. In this case, tasks are likely executed
in sequence, and the stage completion time depends on the
number of tasks that are sped up. The conservative strategy
seeks to cache the input peers for as many tasks as possible
and hence can achieve better performance than the aggressive
strategy: the latter is too ambitious to speed up all tasks in a
stage, missing the opportunity to accelerate some of them.

On the other hand, when the cluster has sufficient amount
of resources to accommodate parallel computation of all
tasks in each compute stage, meeting the all-or-nothing
caching requirement becomes highly relevant. The aggressive
replacement strategy therefore arises as a better choice that
helps reduce the stage completion time effectively. We shall
confirm these points through evaluations in Sec. 5.1.

3.3 LRC-Online

Accurately computing the reference count requires extracting
the entire data dependency DAG in an application. In frame-
works such as Spark and Tez, an application typically runs
as a workflow of multiple jobs, where a downstream job is
submitted after all its upstream dependents have completed.
For each job, the DAG information is available only after
the job is submitted. Therefore, for an application, the data
dependency between its constituent jobs is usually runtime
information that cannot be known a priori, especially when
the jobs are executed iteratively. We address this challenge in
two cases.

Recurring applications. Production trace studies reveal
that a large portion of cluster workloads are recurring
applications [26], which are run periodically when new data
becomes available. For these applications, we can learn their
DAGs from previous runs and apply offline LRC algorithms
directly.

Non-Recurring applications. For non-recurring applications
such as interactive ad-hoc queries, offline LRC algorithms
cannot be used for optimal eviction decision because the
application’s DAG dependency is gradually revealed as
the workflow executes and new jobs are submitted. We

A

C

B

D

E

Job 2Job 1

Fig. 8: An example DAG to illustrate the workflow of LRC-
Online, where blocks D and E are respectively computed
by Job 1 and Job 2. The former is submitted earlier than the
latter.

therefore propose an online solution called LRC-Online that
approximates the eviction decisions generated in the offline
settings. Upon the submission of a new job, LRC-Online
parses the reference counts of the blocks in that job and
updates the reference count record it maintains at runtime.
For blocks that already exist, LRC-Online adds its reference
count in the newly submitted job to its remaining reference
count. Fig. 8 gives an example illustrating the workflow of
LRC-Online. We consider a simple application consisting of
two jobs, Job 1 and Job 2, that respectively compute blocks
D and E. The complete DAG of application is not known
a priori but gradually revealed upon a job submission. Let
Job 1 be submitted first, and the reference counts of blocks A
and B are set to 1. While this is inaccurate as block B is also
used to compute block E, LRC-Online will soon correct its
value after Job 2 has been submitted.

Similar to the offline solution, LRC-Online can enforce
conservative or aggressive replacement policy when updat-
ing effective reference counts at runtime in order to retain
the all-or-nothing property. Without the offline information
of the entire application, LRC-Online can only meet the all-
or-nothing caching requirements in the currently submitted
jobs. Furthermore, the all-or-nothing requirement at runtime
can be challenging to capture precisely. On one hand, the
requirement may be different levels for different jobs running
concurrently. On the other hand, the requirement also
changes with time. If we can predict which tasks will be
scheduled in parallel, e.g., based on prediction or learning
techniques, we can enforce the two replacement strategies
to different jobs accordingly. We can also dynamically
switch between the two at runtime. We leave this to future
exploration but concentrate on defining and characterizing
the two atomic replacement strategies in this paper.

LRC-Online extends the applicability of LRC algorithms
to the shared environments where multiple applications
run in a cluster and have common input datasets. In this
case, both inter- and intra-application dependencies exist,
but cannot be predicted as they depend on the actual job
scheduling order. LRC-Online can update the reference
counts once new dependency information becomes available.

We have evaluated the performance of LRC-Online (see
Sec. 5). Our results show that the performance of LRC-
Online remains close to that of LRC with the offline DAG
information.
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Fig. 9: Overall system architecture of the proposed
application-aware cache manager in Spark. Our implementa-
tion modules are highlighted as shaded boxes.

4 IMPLEMENTATION

In this section, we describe our implementation of LRC as a
pluggable cache manager in Spark.

4.1 Spark Implementation

Architecture overview: Fig. 9 gives an architecture overview
of our cache manager, where the shaded boxes highlight our
implementation modules.

The cache manager consists of two centralized con-
trollers, i.e., CacheManagerMaster and PeerTrackerMaster,
on the driver node and two distributed components,
i.e., RDDMonitor and PeerTracker, on each worker node.
The CacheManagerMaster implements the main logic of
the LRC and LRC-Online policies. It obtains the data-
dependency DAGs from AppDAGAnalyzer for recurring ap-
plications or from DAGScheduler in an online fashion for
non-recurring applications. The PeerTrackerMaster incorpo-
rates the all-or-nothing property into the cache manager.
It profiles the peer information in the DAGs obtained
from the CacheManagerMaster, and communicates with the
PeerTrackers in worker nodes when necessary. We summa-
rize the key APIs of our implementation in Table 2.

Workflow: Whenever an application is submitted to the
Spark driver, the AppDAGAnalyzer firstly detects whether the
application has been executed before. For a recurring ap-
plication, the AppDAGAnalyzer exposes the entire application
DAG learned from previous runs to the CacheManagerMaster
to implement the LRC policy. For a non-recurring applica-
tion, the CacheManagerMaster obtains the job DAGs from
DAGScheduler instead to implement the LRC-Online policy.
Once the CacheManagerMaster receives a DAG, it parses
the reference count profile and peer information, which
are later broadcast via the BlockManagerMasterEndpoint to
RDDMonitors and PeerTrackers in worker nodes, respectively.
The RDDMonitors maintain the reference count information
locally and helps to make the eviction decisions whenever

the cache is full. The PeerTrackers report the caching status
of the peer blocks to meet the all-or-nothing requirement.

Intuitively, to implement LRC with conservative or
aggressive replacement, the PeerTrackerMaster has to keep
track of the caching status of every peer block. However,
such a naive approach requires massive additional message
exchanges between PeerTrackerMaster and PeerTrackers.
We manage to reduce the communication overhead of the
system by dividing peer blocks into complete-groups. A
complete-group is defined as a group of cached (or to-be-
computed) blocks that are able to speed up a task (stage)
for LRC with conservative (aggressive) replacement. By
definition, a complete-group becomes invalid once any of its
blocks is evicted out of memory. In that case, the reference
count of blocks in the complete-group will be updated, once
and for all. Therefore, only one message exchange is needed
for any complete-group. Specifically, upon a block eviction,
the PeerTracker checks whether this block belongs to any
complete-group. If so, it removes these complete-groups from
its record and notifies the RDDMonitor to update the reference
counts of blocks in these groups. A block eviction report is
sent to the PeerTrackerMaster and then broadcasted to other
workers, in which the PeerTrackers and RDDMonitors will
update the reference counts for its peer blocks accordingly.

4.2 Discussions

Communication overhead: We manage to reduce the com-
munication overhead with two approaches.

First, each worker maintains the reference count profile
locally and synchronizes with the controller with the least
message exchanges possible. The CacheManagerMaster sends
reference count updates to the corresponding workers only
when necessary. In particular, there are two cases when an
update is required: 1) When a new job DAG is received from
the DAGScheduler, the CacheManagerMaster notifies workers
to update the reference count of the corresponding RDD
blocks; 2) when an RDD block has been referenced, and the
block has replicas on the other workers, all those workers
should reduce a reference as well to have a consistent
reference count of the block. By default, RDD blocks are not
replicated across the cluster, so our implementation checks
the configuration first to see if the second case needs to be
considered.

Second, by introducing complete-groups, our implemen-
tation for all-or-nothing support only exchanges messages if
necessary. To prove this property, we first show that at most
one broadcasting is required for an entire complete-group in
our implementation. By managing blocks in complete-groups
locally in the PeerTrackers, we obviate the need of tracking
the caching status of peer blocks individually. Once a block
in a complete-group is evicted, the reference counts of the
other blocks in the same group need simultaneous updates,
which can be achieved using one broadcast message. Once
the eviction message gets broadcast, the complete-group can
be removed, and no more update messages are required for
this group. We next show that, if a block in a complete-group
is evicted, the broadcast message is required to be sent to all
workers. Due to RDD’s lazy execution nature, it is possible
that some of the blocks in a complete-group might not be
computed yet when an eviction happens to a member block.
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TABLE 2: Key APIs of our Spark implementation.

API Description
parseDAG The CacheManagerMaster parses

the DAG information obtained
from the DAGScheduler (or the
AppDAGAnalyzer) and returns the
profiled reference count for each
RDD and the peer information.

broadcastReferenceCount The CacheManagerMaster sends the
parsed reference count profile to the
corresponding RDDMonitor.

broadcastPeerProfile The PeerTrackerMaster
broadcasts the peer profile
to the PeerTrackers via the
BlockManagerMasterEndpoint.

updateReferenceCount Upon receiving the reference count
updating message, the RDDMonitor
updates reference counts of the corre-
sponding RDD blocks.

decrementReferenceCount When an RDD block is referenced, the
RDDMonitor deducts the its reference
count in the maintained profile.

evictBlocks When the cache is full, the
BlockManager evicts the blocks
in the ascending order of reference
count until enough space is released.

reportBlockEviction The PeerTracker informs the
PeerTrackerMaster when an RDD
block from a complete-group is
evicted out of memory.

broadcastPeerEviction Upon receiving a block-eviction re-
port, the PeerTrackerMaster broad-
casts the block-eviction message to
all the PeerTrackers.

checkOnEvictionMessage Upon receiving a block-eviction mes-
sage, the PeerTracker checks whether
the evicted block belongs to any
complete-group. If yes, notify the
RDDMonitor to decrease the refer-
ence counts of blocks in this group
correspondingly.

checkOnBlockEviction When a block is evicted out of mem-
ory, the PeerTracker firstly checks
whether this block belongs to any
complete-group. If yes, it sends
a block-eviction message to the
PeerTrackerMaster.

As a result, the block eviction message should be broadcast
to all workers.

Fault tolerance: It is possible that a worker may lose
connection to the driver at runtime, which results in a task
failure. In this case, the reference count profile maintained
by the CacheManagerMaster will be inaccurate as the failed
tasks will be rescheduled soon. To address this inconsistency
issue, the CacheManagerMaster records the job ID upon
receiving a job DAG from DAGScheduler. In this way, the
CacheManagerMaster can quickly detect job re-computation
if the same job ID has been spotted before. The consistency
check for the reference count can then be applied.

5 EVALUATIONS

In this section, we evaluate the performance of LRC poli-
cies through Amazon EC2 deployment and trace-driven

simulations. First, we investigate the impact of the all-or-
nothing caching requirement with synthetic workloads (Sec.
5.1). We compare the efficacy of LRC with aggressive and
conservative replacement with different resource provisions,
in an effort to simulate the varying production cluster
environment. Next, we evaluate the overall performance
of LRC against typical application workloads in SparkBench
suite [16] (Sec. 5.2). We investigate how being dependency-
aware helps speed up a single application (Sec. 5.2.1) with
much shorter runtime, and how such a benefit can be
achieved even when the DAG information is profiled online.
We next evaluate the performance of LRC in a multi-tenant
environment (Sec. 5.2.2) where multiple applications run in a
shared cluster, competing for the memory caches against each
other. Finally, we conduct simulations driven by production
traces [18] from the Alibaba Group (Sec. 5.3). We show
the performance advantages of LRC over existing baselines,
and demonstrate the necessity of complying with the all-or-
nothing caching requirement in real clusters. We summarize
the highlights of our evaluations as follows.

• In the presence of the all-or-nothing requirement, the
cache hit ratio is not closely relevant to the cache
performance. In other words, increasing the cache
hit ratio does not necessarily result in a shorter
application completion time.

• In a cluster with insufficient compute resources, the
LRC policy with conservative replacement has the
shortest runtime, which is 34.0% and 19.5% faster
compared with the LRU and LRC policies, respec-
tively. When the computing power is sufficient to
allow for parallel executions of an entire compute
stage, the LRC policy with aggressive replacement
achieves the fastest execution speed, decreasing the
runtime by 30.2% and 15.9% over the LRU and the
baseline LRC policy, respectively.

• For typical workloads in production clusters, LRC
can reduce the application runtime by up to 60%
compared with the default LRU policy.

• In most cases, LRC-Online well approximates LRC
and consistently outperforms the LRU policy across
applications.

• Trace-driven simulations show that LRC achieves
22.3% and 284.4% higher average cache hit ratio
compared with LRU and MEMTUNE [19], a cache
replacement policy that also leverages data depen-
dency. LRC with aggressive replacement has 21%
higher 5th percentile stage acceleration ratio over the
baseline LRC, indicating a better chance to speed up
the compute stages.

Experimental settings: Our implementation is based on
Spark 1.6.1. In order to highlight the performance difference
of memory read-write and disk I/O, we disabled the OS page
cache using memory buffer by triggering direct disk I/O
from/to the hard disk. If not specified otherwise, each node
we used in the EC2 deployment is an m4.large instance [24],
with a dual-core 2.4 GHz Intel Xeon E5-2676 v3 (Haswell)
processor and 8 GB memory.
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TABLE 3: Workload and cluster settings for experiments on
conservative/aggressive replacement

Compute resources Nodes Tenants Tasks
per
tenant

Total
input
size

Insufficient 10 10 100 4 GB

Sufficient 50 20 50 8 GB

5.1 Conservative and Aggressive Replacement
We start with evaluations on the impact of the all-or-nothing
caching requirement. We use synthetic workloads to demon-
strate how well the all-or-nothing requirement is addressed
by our proposed policies with conservative/aggressive
replacement under different cluster settings.

Workloads: In this experiment, we simulate multiple tenants
submitting Spark zip [25] jobs in parallel. In each job, two
files each of size 400 MB are firstly partitioned into N blocks
stored across the cluster. After that, these blocks are zipped
into key-value pairs, where the keys are the blocks from the
first file, and the values are the blocks from the second file.
Notice that only when both the key and value are cached in
memory will a zip task be sped up.

Cluster deployment: We deploy two clusters consisting of
10 and 50 nodes, respectively, to simulate the cases with
insufficient and abundant compute resources in accordance
with the two levels of all-or-nothing requirement. In the first
scenario, we have 10 tenants competing for the compute
slots in the 10-node cluster. Each file is decomposed into 100
blocks, i.e., N = 100. Each tenant has 100 zip tasks to run,
which cannot be executed in parallel. In the latter case with a
50-node cluster, we increase the number of tenants to 20 and
have N = 50. Therefore, the cluster is capable to schedule all
the 50 tasks of a tenant for parallel execution. The workloads
and cluster settings are summarized in Table 3.

Metric: Ultimately, we improve the cache management in
order to speed up the data analytics computations. The metric
we use to evaluate, hence, is the average application runtime.
Besides, we propose two metrics, task acceleration ratio and
stage acceleration ratio, to effectively measure how much the
computation is sped up by the memory caches. Specifically,
we define that a compute task is sped up if all of its input
data is cached in memory, and that a compute stage is sped
up if all of its tasks are sped up. The task/stage acceleration
ratio is defined as the percentage of tasks/stages being sped
up by the cache. The baseline for our deployment is the LRU
policy.

5.1.1 Cluster with insufficient compute resources.
In the first set of experiments, we compare the cache perform
of four policies, i.e., LRU, LRC, LRC with conservative
replacement, and LRC with aggressive replacement in a
cluster with insufficient compute resources. We measure
the total experiment runtime, i.e., the make span of the 10
submitted jobs, the cache hit ratio, and the task acceleration
ratio.

Runtime: Fig. 10 shows the average completion time over
10 repeated runs, where the error bars depict the maximum
and minimum values. To our expectation, as the size of

0.89 1.33 1.78 2.22 2.66 3.55

Cache Size (GB)

0

50

100

150

200

250

300

350

R
u

n
ti
m

e
 (

m
s
)

LRU LRC LRC-Conservative LRC-Aggressive

Fig. 10: Runtime with different cache policies on a 10-node
cluster.
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Fig. 11: Cache hit ratio with different cache policies on a
10-node cluster.

RDD cache increases, the total experiment runtime decreases
under all the four cache policies. In all cases, LRC consistently
outperforms the default LRU policy. The two policies taking
care of the all-or-nothing requirement further reduces the
experiment completion time, where LRC with conservative
replacement achieves the shortest runtime. When the cache
size is 3.55 GB, for instance, the average runtimes under the
four policies are 262 s (LRU), 215 s (LRC), 173 s (LRC with
conservative replacement), and 178 s (LRC with aggressive
replacement) respectively. The LRC policy with conservative
replacement speeds up the job execution by 34.0% and 19.5%
compared with the LRU and LRC policies, respectively.

Cache hit ratio: Fig. 11 shows that LRC achieves the highest
cache hit ratio, while LRC with conservative/aggressive
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Fig. 12: Task acceleration ratio with different cache policies
on a 10-node cluster. Notice that the task acceleration of LRU
is always near zero.
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Fig. 13: Runtime with different cache policies on a 50-node
cluster.
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Fig. 14: Cache hit ratio with different cache policies on a
50-node cluster.

replacement closely follows. This is because LRC aims to
optimize the cache hit ratio, and it outperforms LRU by
taking advantage of the data dependency information. The
LRC policies with conservative/aggressive replacement also
make use of this information, but they give up on retaining
those ineffective cache hits that are unable to speed up the
computation. It is for this reason that the cache hit ratio is
slightly compromised. In particular, LRC with aggressive
replacement sacrifices more than LRC with conservative
replacement as it only favors the data blocks that speed up
an entire compute stage.

Task acceleration ratio: Fig. 12 shows that LRC with con-
servative replacement always achieves the highest task
acceleration ratio. The smaller the cache size is, the more
advantageous it becomes compared with LRC, which pre-
cisely matches the performance in runtime shown in Fig. 10.

We therefore conclude that when the compute resources
are constrained compared to the demands, the task accel-
eration ratio is a more relevant metric than the cache hit
ratio. In such a scenario, the LRC policy with conservative
replacement is able to make the best use of the cache
resources to effectively speed up the computation.

5.1.2 Cluster with sufficient compute resources.

Now we investigate the scenario where the computing power
is abundant to execute the tasks of an entire compute stage
in parallel with a cluster of 50 nodes. We measure the
performance in experiment runtime, the cache hit ratio, the
task acceleration ratio and the stage acceleration ratio for
comparison. The results are shown in Fig. 13 – Fig. 16.
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Fig. 15: Task acceleration ratio with different cache policies
on a 50-node cluster.
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Fig. 16: Stage acceleration ratio with different cache policies
on a 50-node cluster.

Runtime: Fig. 13 shows that the execution time is the shortest
under the LRC policy with aggressive replacement. The
advantage gets more prominent when the RDD cache size
increases. For instance, with an RDD cache of 13.2 GB, the
average runtimes under the four policies are 182 s (LRU),
151 s (LRC), 151 s (LRC with conservative replacement), and
127 s (LRC with aggressive replacement), respectively. The
LRC policy with aggressive replacement speeds up the job
execution by 30.2% and 15.9% compared with the LRU and
LRC policies, respectively.

Cache hit ratio and task acceleration ratio: Fig. 14 and
Fig. 15 show the cache hit ratio and task hit ratio, respectively.
As observed previously, the LRC policy achieves the highest
cache hit ratio, and the LRC policy with conservative
replacement achieves the highest task hit ratio. Nonetheless,
it takes the two policies nearly the same amount of time to
finish the 50 jobs, which is longer than the execution time
under the LRC policy with aggressive replacement.

Stage acceleration ratio: Fig. 16 compares the stage hit ratio
of the four policies, where the LRC police with aggressive re-
placement consistently outperforms the others. Surprisingly,
the LRC policy (the LRC policy with conservative policy)
fails to speed up any compute stage in most cases, despite
of the high cache hit ratio (task acceleration ratio) achieved.
This explains why they need a longer execution time than
the LRC policy with aggressive replacement in this case.

Notice that the task (stage) acceleration ratio of LRU is
always near zero in our experiment. Since the tenants submit
their jobs in parallel, the first file (keys required by zip) of
each job is highly likely to be replaced by the second file
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TABLE 4: Impact of memory caches on the application
runtime. We compare against the two extreme cases: caching
all data in memory versus caching none.

Workload Cache All Cache None

Page Rank 56 s 552 s

Connected Component 34 s 72 s

Shortest Paths 36 s 78 s

K-Means 26 s 30 s

Pregel Operation 42 s 156 s

Strongly Connected Component 126 s 216 s

Label Propagation 34 s 37 s

SVD Plus Plus 55 s 120 s

Triangle Count 84 s 99 s

Support Vector Machine (SVM) 72 s 138 s

(values required by zip) of other jobs arriving later under the
LRU policy. When the zip stage starts, only the values are
cached. Therefore, no task can be sped up, let alone speeding
any compute stage.

We therefore conclude that when the compute resources
are sufficient to allow for parallel execution of entire stages,
the stage acceleration ratio is the most relevant metric for
cache performance. In such a scenario, the LRC policy with
strict replacement works as the best choice to effectively
speed up the computation.

5.2 Macro-Benchmark

To evaluate the performance of the LRC policy in production
clusters, we do experiments using typical application work-
loads in SparkBench suite [16]. Notice that the applications
in SparkBench involve very little all-or-nothing requirements,
where most of the tasks depends on a single RDD block 2.
Therefore, the LRC policies with conservative/aggressive re-
placement have trivial contribution to the cache performance
over the baseline LRC policy. In the following experiments,
we focus on the performance of LRC and LRC-Online against
the default LRU policy.

5.2.1 Single-tenant experiment
We start with a simple scenario where a single tenant runs
an application in a small private cluster consisting of 20
nodes. We ran typical application workloads in SparkBench
and measured the cache hit ratio as well as the application
runtime.

Relevance of memory caches: It is worth emphasizing that
memory caches may become irrelevant for some applications.
For example, we have observed in SparkBench that some
applications are compute-intensive, and their runtime is
mostly dictated by the CPU cycles. Some applications, on
the other hand, need to shuffle large volumes of data, and
their performance is bottlenecked by the network. These
applications benefit little from efficient cache management
and do not see a significant runtime improvement even if
the system caches all data in memory.

2. Shuffling is not considered for all-or-nothing requirement, as shuffle
blocks are not stored in RDD caches.

In order to differentiate from these applications, we re-
spectively measured the application runtime in two extreme
cases: 1) the system has large enough memory and caches all
data, and 2) the system caches no data at all. We summarize
our measurement results in Table 4. We see that some
SparkBench applications, notably K-Means, Label Propagation
and Triangle Count, have almost the same runtime in the two
cases, meaning that memory caches are irrelevant to their
performance. We therefore exclude these applications from
evaluations but focus on four memory-intensive workloads
whose performance critically depends on cache management:
Page Rank, Pregel Operation, Connected Component, and SVD
Plus Plus. The input data size varies from 120MB to 540MB.

Cache hit ratio and application runtime: We ran each
application using three cache replacement policies, i.e., LRU,
LRC, and LRC-Online, with different memory cache sizes.
In particular, we configured storage.memoryFraction in the
legacy Spark to throttle the memory used for RDD caching
to a given size. We measured the cache hit ratio and the
application runtime against different cache sizes and depict
the results in Fig. 17 and Fig. 18, respectively. The results
have been averaged over 5 runs.

As expected, the less availability of the memory caches
in the cluster, the smaller the cache hit ratio (Fig. 17), and
the longer the application runs (Fig. 18). Regardless of the
cache size, the two LRC algorithms consistently outperform
LRU, the default cache management policy in Spark, across
all applications. The benefits achieved by the LRC policy,
in terms of the application speedup, varies with different
cache sizes as well as the application workloads. In particular,
compared with the default LRU policy, our LRC algorithm
reduces the runtime of Page Rank by 60% (from 170 s to 64 s)
when the cluster cache size is 5.5 GB. Table 5 summarizes the
largest runtime savings of LRC over LRU for each application
we evaluated.

The efficiency of LRC policy can also be illustrated from
a different perspective, in that LRC requires much smaller
cache spaces than that of LRU to achieve the same cache hit
ratio. For example, to achieve the target hit ratio of 0.7 for
Pregel Operation, LRU requires 0.55 GB memory caches. In
comparison, LRC requires only 0.22 GB, an equivalent of 60%
saving of cache spaces.

We make another interesting observation that for different
applications, the cache hit ratio has different impacts on their
runtime. For example, the workload of Page Rank suffers
from the most significant slowdown, from 67 s to 320 s, when
the cache hit ratio decreases from 1 to 0.85. The reason is that
the computation of Page Rank consists of some large RDDs,
and their cache miss critically increases the total runtime. For
Connected Component, salient slowdown is observed when
the cache hit ratio drops from 0.7 to 0.4; for SVD Plus Plus,
we observe a linear slowdown with respect to the decrease
of cache hit ratio.

LRC-Online: As discussed in the previous section, when
the entire application DAG cannot be retrieved a priori, we
can profile the submitted job DAGs at runtime using LRC-
Online. We now evaluate how such an online approach
can approximate the LRC policy with offline knowledge
of application DAG. We see through Fig. 17 and Fig. 18,
that LRC-Online is a close approximation of LRC for all
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Fig. 17: Cache hit ratio under the three cache management policies with different cache sizes.

Fig. 18: Application runtime under the three cache management policies with different cache sizes.

TABLE 5: Summary of the maximum reduction of application runtime over LRU.

Workload Cache Size LRU LRC LRC-Online Speedup by LRC Speedup by LRC-Online

Page Rank 6.6 GB 169.3 s 68.4 s 84.5 s 59.58% 50.06%

Pregel Operation 0.22 GB 121.9 s 66.3 s 75.9 s 45.64% 37.74%

Connected Component 2.2 GB 50.6 s 27.6 s 29.9 s 45.47% 40.97%

SVD Plus Plus 0.88 GB 254.3 s 177.6 s 223.9 s 30.17% 11.96%

applications except SVD Plus Plus. As illustrated in Table 5,
with online profiling, LRC can only speed up the application
by 12%, as opposed to 30% provided by the offline algorithm.

We attribute the performance loss of LRC-Online to the
fact that the datasets generated in the current job might
be referenced by another in the future, whose DAG is yet
available to the DAGScheduler. Therefore, the reference count
of the dataset calculated at the current stage may not be
accurate. To quantify the inaccuracy of online profiling, we
measure reference distance, for each data reference, as the
number of intermediate jobs from the source job where the
data is generated to the destination job where the data is used.
Intuitively, the longer the reference distance is, the greater
chance it is that referencing the block in the future may
encounter a cache miss. This is because without knowing the
entire application DAG beforehand, LRC-Online can only
tell the data dependency in the current job, and will likely
evict all the generated data blocks after the source job has
completed.

Table 6 summarizes the average reference distance of the
data blocks generated in each application. All applications
but SVD Plus Plus have reference distance less than 1,
meaning that most of the generated data is likely used either
by the current job or the next one. This result is in line with
the observation made in Fig. 3, where intermediate data
goes inactive in waves and in lockstep with job submission.
SVD Plus Plus, on the other hand, has the longest reference
distance, which explains its performance loss with LRC-

TABLE 6: Average reference distance.

Workload Average Reference Distance

PageRank 0.95

PregelOperation 0.73

ConnectedComponent 0.74

SVDPlusPlus 1.71

TABLE 7: Summary of workloads used in the multi-tenant
experiment.

Tenant Index Workload Input Data Size

1-8 ConnectedComponent 745.4 MB

9-16 PregelOperation 66.9 MB

Online.
To summarize, LRC-Online is a practical solution that

well approximates LRC and consistently outperforms the
LRU policy across applications.

5.2.2 Multi-Tenant Experiment
We now investigate how our cache manager performs in a
multi-tenant environment through a 50-node EC2 deploy-
ment. Notice that the Spark driver unifies the indexing of
jobs and RDDs for all tenants. Once a job is submitted, the
RDDs in its DAG are indexed incrementally based on the
unified index. In this case, the offline RDD reference count
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Fig. 19: Cache hit ratio and total runtime with different cache
sizes in the multi-tenant experiment.
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Fig. 20: Cache hit ratio and total runtime with different
numbers of tenants.

is unavailable because the order of actual job submission
sequence from multiple tenants is uncertain due to runtime
dynamics. Therefore, the data dependency DAG can only
be determined online. For this reason, we compare the
performance of LRC-Online against LRU.

In the first set of experiments, we emulated 16 tenants
submitting jobs simultaneously to the Spark driver, with
different cache sizes. The workload profile of the tenants is
given in Table 7. In the second experiment, we fixed the total
cache size to be 1.26 GB and increased the number of tenants
from 8 to 20.

Fig. 19 and Fig. 20 show the results. We find that LRC-
Online is capable of achieving larger performance gains over
LRU with smaller cache sizes or with more tenants. This
suggests that leveraging the application semantics of data
dependency is of great significance, especially when the
cluster memory caches are heavily competed.

5.3 Trace-Driven Simulations

Finally, we evaluate the performance of LRC policies against
industrial workload traces to evaluate the performance of
LRC policies at a larger scale. Specifically, we obtain the
production workloads released in an Alibaba trace [18].
As the trace involves thousands of nodes, we resort to
trace-driven simulations to faithfully replay the Alibaba
workloads.

Workload: We use the recently released workload trace [18]
collected from an Alibaba’s production cluster. This trace
reveals the DAG structures of business-critical workloads
of Alibaba, covering over 4 million MapReduce-like batch

jobs running in a cluster of around 4k machines over 8
days. As the Alibaba trace provides no information about
the job’s input/output data size, we refer to the coflow
benchmark [27] synthesized from a production trace of a
3000-machine MapReduce cluster at Facebook. This trace
provides the shuffled data size in representative MapReduce
jobs, which can be used to estimate the amount of interme-
diate data generated by the MapReduce jobs in the Alibaba
trace.

Setup: We selected 100 jobs in the Alibaba trace with
the most complex DAG structure (the most number of
computing stages), as those jobs generate large amounts
of intermediate data, posing a significant pressure to the
cache management. We replayed the execution of 100 jobs
sequentially, and set the total cache size to 1 GB for each job.
For each compute task, we synthesized its output data size
by randomly sampling the per-mapper flow size across all
jobs in the coflow benchmark [27]. We have open-sourced our
simulator [20] for reproducing the results and experimenting
with other cache replacement policies against the Alibaba
trace.

Baselines: We compare the performance of LRC policies
(the baseline LRC and LRC with conservative/aggressive
replacement) against LRU and MEMTUNE [19], a memory
manager that also leverages the data dependency knowledge
to optimize the cache replacement in data analytics systems.
MEMTUNE employs three techniques to improve memory
management, i.e., dynamically tuning the memory share
for computation and data caching, prefetching data for
downstream tasks, and employing a replacement strategy
that seeks to evict the input data of finished tasks (see Sec. 6
for the comparison with LRC). Since these three optimization
techniques are orthogonal to each other and LRC policies
focus on cache replacement, we limit the scope of comparison
against MEMTUNE to its cache replacement strategy. The
dynamic tuning of memory fractions and data prefetching
are also applicable to LRC policies.

Notice that there is no performance difference between
LRC policies and their online versions, as the 100 jobs are
replayed one after another and there is no data dependency
between jobs. In this case, the dependency information
obtained online is exactly the same as the offline knowledge.

Results: Fig. 21 shows the boxplot of the cache hit ratio across
the 100 jobs profiled in the Alibaba trace. The baseline LRC
policy achieves the highest average cache hit ratio (87.3%),
outperforming LRU (71.3% cache hit ratio) by 22.3% and
MEMTUNE by 284.4% (22.7% cache hit ratio). The cache
replacement strategy of MEMTUNE does not perform well
in our evaluation as in the production traces, it is common
to have the same data blocks repeatedly referenced by many
tasks across multiple stages of a job. With MEMTUNE, active
data blocks get evicted after their first usage, leading to low
cache hit ratio. In contrast, LRC maintains a big picture
as it tracks the dependency relationship within the entire
job. Hence, LRC will not mistakenly evict out the data with
frequent usage in the coming compute stages. LRC with
conservative and aggressive replacement have a slightly
lower average cache hit ratio than the LRC baseline, a price
paid for the fulfillment of the all-or-nothing requirements.

Figs. 22 and 23 show the boxplots of task and stage
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Fig. 21: Cache hit ratio under different cache policies with the
Alibaba trace. Boxes show the 25th percentile, mean, and 75th

percentile, and whiskers depict the 5th and 95th percentiles.
Quantiles are the same in Fig. 22 and Fig. 23.
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Fig. 22: Task acceleration ratio under different cache policies
with the Alibaba trace.
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Fig. 23: Stage acceleration ratio under different cache policies
with the Alibaba trace.

acceleration ratios, respectively. As expected, LRC with
conservative (aggressive) replacement achieves the highest
average task (stage) acceleration ratio. Compared with MEM-
TUNE (LRU), LRC with conservative replacement achieves
116.0% (12.3%) improvement in terms of the average task
acceleration ratio. Regarding the stage acceleration ratio,
LRC with aggressive replacement outperforms MEMTUNE
(LRU) by 114.7% (33.3%). The stage acceleration ratio of
LRC with aggressive replacement is much better than that of
the baseline LRC policy. In particular, the tail (5th percentile)
stage acceleration ratio is improved by 20.9% (from 34.0% to
41.1%). These results demonstrate the necessity of fulfilling
the all-or-nothing caching requirements in order to effectively
speed up the computation in production clusters.

While the SparkBench jobs in Sec. 5.2 exhibit limited all-
or-nothing requirements, we have found strong evidence in
the Alibaba production workloads that the all-or-nothing
caching requirements should be taken care of. Therefore, the
all-or-nothing policies should be considered in a workload-
specific manner. Nonetheless, the evaluation results with
both the SparkBench and the Alibaba trace have shown the
performance advantage of LRC over the other existing cache
replacement policies.

6 RELATED WORK

Traditional Caching on a Single Machine: Memory caching
has a long history and has been widely employed in storage
systems [28], databases [29], file systems [30], web servers
[31], operating systems [32], and processors [33]. Over the
years, a vast amount of caching algorithms have been
proposed. These algorithms run on a single machine and
can be broadly divided into two categories:

Recency/frequency-based policies: LRU [23] and LFU [10]
are the two widely used caching algorithms. As shown
in Section 2, neither algorithm adapts well to the data
access pattern in data analytic clusters even though they
are simple to implement. Recency and frequency have also
been combined in many caching policies. For example, Least
Recently/Frequently Used (LRFU) [34] and its adaptive
version [35] dynamically adjust between LRU and LFU.

Hint-based policies: Many cache policies evict/prefetch
data blocks through hints from applications [36], [37], which
are provided by the programmers to indicate what data
will be referenced again and when. Nevertheless, inserting
such hints can be difficult to the programmer, who has to
carefully examine the underlying data access pattern. As an
alternative approach, hints can also be inserted by compliers
[15] or through predictions [20]. Yet, these techniques cannot
handle complex, input-dependent access patterns.

To summarize, traditional caching policies do not assume
application semantics, nor do they factor in the data parallel
nature of cluster applications.

Cache Management in Parallel Processing Systems: De-
spite the significant performance impact of memory caches,
cache management remains a relatively unchartered territory
in data analytics systems. Prevalent analytics frameworks
(e.g., Spark [4], Tez [15], and Tachyon [6]) simply employ
LRU to manage cached data on cluster machines, which
results in a significant performance loss [5], [19].
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To our knowledge, MEMTUNE [19] is the most closely
related work to LRC, which also leverages the application
semantics for cache management. Specifically, MEMTUNE
employs three orthogonal techniques to improve memory
management: dynamically adjusting the memory fraction
for task computation and data caching, prefetching data for
coming tasks, and employing a replacement strategy that
seeks to evict the input data of finished tasks. We have
shown through trace-driven simulations (Sec. 5.3) that the
replacement strategy of MEMTUNE may mistakenly evict
out active data, leading to lower cache hit ratios than the LRC
policies. That said, the other two orthogonal techniques of
MEMTUNE can still be applied to LRC to further improve the
memory efficiency. As a matter of fact, starting from version
1.6, Spark now natively supports the dynamic tuning of
memory share for computation and data caching.

Caching for all-or-nothing requirement: To the best of our
knowledge, PACMan [5] is the only work that tries to
meet the all-or-nothing requirement for cache management
in parallel clusters. However, PACMan is agnostic to the
semantics of job DAGs, and its objective is to speed up data
sharing across different jobs by caching complete datasets
(HDFS files). Since PACMan only retains the all-or-nothing
property for each individual dataset, if a job depends on
multiple datasets, completely caching a subset of them
provides no performance benefits.

There are also existing works [38], [39] studying the
benefits of scheduling tasks in the same compute stage
for DAG-based workloads. However, the all-or-nothing
requirements are much more challenging for data caching
than for task scheduling. In data analytics applications,
a data block is typically referenced by multiple compute
stages as input. Therefore, to meet the all-or-nothing caching
requirements, LRC needs to traverse all available DAGs to get
the dependency relationship across blocks and judiciously
determine what dataset to cache. In contrast, a compute
instance can only be scheduled to execute a single task at a
time. For the task scheduler, the all-or-nothing policy can be
easily implemented in a greedy manner, i.e., scheduling tasks
in the current compute stage all at once without concerning
about the future stages in the DAGs.

7 CONCLUDING REMARKS

In this paper, we proposed a dependency-aware cache
management policy, Least Reference Count (LRC), which
evicts data blocks whose reference count is the smallest.
With LRC, inactive data blocks can be timely detected and
evicted, saving cache spaces for more useful data. In addition,
we identified the defining two-level all-or-nothing property
in data analytics systems and tailored the LRC policy
with conservative/aggressive replacement to address this
requirement under different cluster environments. We have
implemented LRC as a pluggable cache manager in Spark,
and evaluated its performance through EC2 deployment.
Experimental results showed that the LRC policies with
conservative/aggressive replacement is able to address the
all-or-nothing caching requirements given different provi-
sioning of compute resources in the cluster. Compared to
the popular LRU policy, our LRC implementation achieves
the same application performance at the expense of only

40% of cache spaces. When using the same amount of
memory caches, LRC reduces the application runtime by
up to 60%. In large-scale simulations feeding production
traces, LRC improves the caching performance by 22% and
282% over LRU and a recently proposed caching policy
called MEMTUNE, respectively.
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