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Abstract

Machine learning (ML) techniques have advanced in leaps and bounds in the past

decade. Its success critically relies on the abundant computing power and the availability

of big data, it is impractical to host ML training on a single machine, and a sole data

source usually does not produce a general enough model. By distributing ML workload

across multiple machines and utilizing data across multiple silos, we can substantially

improve the quality of ML training. As large-scale ML training is increasingly deployed in

production systems involving multiple entities, how to improve efficiency, and ensure the

confidentiality of the participants become the pressing needs. First, how to efficiently train

an ML model in a cluster with the presence of heterogeneity? Second, in the context of

federated learning (FL) where multiple data owners collaboratively train a model together,

how to mitigate the overhead introduced by the privacy-preserving techniques? Lastly,

in the nuance case where many organizations who own data but not ML expertise would

like to pool their data and collaborate with those who have expertise (model owner) to

train generalizable models, how to protect the model owner’s intellectual property (model

privacy) while preserving the data privacy of data owners?

General ML training solutions find themselves inadequate under the efficiency and
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privacy challenges posed by distributed ML. First, traditional distributed ML systems

often conduct asynchronous training to mitigate the impact of stragglers. While it max-

imizes the training throughput, the price paid is degraded training quality as there are

inconsistency across workers. Second, although techniques like Homomorphic Encryp-

tion (HE) can be conveniently adopted to preserve data privacy in FL, they induce pro-

hibitively high computation and communication overheads. Third, there is yet to be a

practical solution that can protect model owner’s intellectual properties without compro-

mising data owner’s privacy.

To fill in the gaps mentioned above, we profile, analyze, and propose new strategies to

improve training efficiency and privacy guarantees.

To improve the efficiency in distributed asynchronous training, we first propose a new

distributed synchronization scheme, termed speculative synchronization. Our scheme al-

lows workers to speculate about the recent parameter updates from others on the fly, and

if necessary, the workers abort the ongoing computation, pull fresher parameters, and start

over to improve the quality of training. We implement our scheme and demonstrate that

speculative synchronization achieves substantial speedups over the asynchronous parallel

scheme with minimal communication overhead.

Second, we present BatchCrypt, a system solution for cross-silo FL that significantly

reduces the encryption and communication overhead caused by HE. Instead of encrypting

individual gradients with full precision, we encode a batch of quantized gradients into a long

integer and encrypt it in one go. To allow gradient-wise aggregation to be performed on

ciphertexts of the encoded batches, we develop new quantization and encoding schemes

along with a novel gradient clipping technique. Our evaluations confirm that BatchCrypt

can effectively reduce the computation and communication overhead.

Lastly, to address the collaborative learning cases where model privacy is also con-

cerned, we devise a scalable system Citadel. Citadel protects privacy for both data and

model owner in untrusted infrastructures with the help of Intel SGX. Citadel performs

training across multiple training enclaves running on behalf of data owners and an aggrega-

tor enclave on behalf of the model owner. Citadel further establishes a strong information

barrier between these enclaves using zero-sum masking or hierarchical aggregation to prevent

data/model leakage during collaborative training. We deploy Citadel on cloud to train

various ML models, and prove it is scalable while providing strong privacy guarantees.

xiii



CHAPTER 1

INTRODUCTION

1.1 Why Efficiency and Privacy Matters in Distributed Ma-
chine Learning Training

Large-scale machine learning (ML) has demonstrated state-of-the-art performance in many

practical applications, such as voice-driven personal assistants [1], photo search [2] and

captioning [3], and autonomous vehicles [4]. Building premium ML models requires not

only extensive ML expertise in feature selection, model design, hyperparameter tuning

and testing, but also a large volume of high-quality training data from diverse sources.

Distributed training is essential to accommodate such workloads. In distributed ML sys-

tems [5, 6, 7, 8, 9], the training data is dispersed across many worker nodes. All workers

share access to the model parameters, sharded across multiple servers. Each worker it-

eratively refines the parameters based on its subset of training data, and communicates

the refinement with parameter servers [6], in parallel with other workers. Naturally, dis-

tributed ML training faces the challenge of how to efficiently communicate among these

workers and preserve high resource utilization.

Besides efficiency, privacy is another prominent concern for distributed ML. In many

industries, data is dispersed and locked in multiple data owners (e.g., banks, hospitals, and

institutes), where data sharing is strictly forbidden due to the growing concerns about

data privacy as well as violating the government regulations [10, 11, 12]. Cross-silo feder-

ated learning (FL) [13, 14] offers an appealing solution to break “data silos” among orga-

nizations, where data owners collaboratively learn a global model without sharing privacy-

sensitive data. To ensure that no client reveals its sensitive data, many approaches have

been proposed [15, 16, 17, 18, 19]. Among them additively homomorphic encryption (HE) is

particularly attractive in the cross-silo setting [18, 19, 13], as it provides a strong privacy

guarantee at no expense of learning accuracy. However, HE causes huge overheads in
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both communication and computation thanks to its cryptographic nature, which impedes

its adoption in industrial applications.

Although FL offers data privacy for data owners, it does not address all privacy con-

cerns in distributed ML. There are often cases where data owners have no sufficient ML

expertise and have to collaborate with an ML solution provider (model owner) who de-

vises ML model and training strategy. For example, hospitals collaborate with an IT firm

to train a diagnostic imaging model over their patients’ data [20]. For model owner here,

the model is valuable intellectual property [21, 22, 23]. Revealing proprietary model de-

tails (e.g., architecture and weights) can potentially result in losing technological advances

to its market competitors.

Efficiency is essential to deliver trained ML model swiftly, while privacy guarantees

enable collaboration among various data owners and model owner otherwise impossi-

ble. We elaborate the efficiency and privacy challenges and research gaps that exist in

distributed ML training in the following sections.

1.2 Three Challenges for Large Scale ML Training

To achieve efficient and secure large scale ML training, there are many challenges, we fo-

cus on the following three in this thesis. First, for distributed training, to maximize train-

ing efficiency, communication among workers must be judiciously studied. Second, for

cross-silo FL with HE, whether we can alleviate the immense HE computation and com-

munication overhead dictates the scale of model supported. Third, for scenarios where

both data privacy and model confidentiality are required, how do we enable training

without trust among the participants. In the rest of this section, we elaborate the unique

challenges regarding each of the three missions and demonstrate why existing works fail

in the context of large-scale deployment.

1.2.1 Large-Scale ML Training in Datacenters

Ideally in distributed training, to ensure high-quality updates from all workers, the com-

putation should use the up-to-date model parameters. This can be achieved through a
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Bulk Synchronous Parallel (BSP) implementation, where workers synchronize at the end

of each iteration and will not proceed until the model parameters have been fully updated

by all workers. However, BSP-style solution suffers from high synchronization overhead

that makes it impractical to solve large ML problems [24, 5]: the presence of straggling

workers inevitably slows down the entire learning progress. Therefore, prevalent ML sys-

tems [5, 9, 7, 8, 6] employ an Asynchronous Parallel (ASP) model, where workers eagerly

start the next iteration without waiting for the others. In this way, the rate of update

is maximized, leading to faster convergence than the BSP approach in many ML prob-

lems. However, without synchronization, updates produced on the inconsistent parame-

ters may drive ASP’s model away from the optimum [24, 25, 26].

Aiming at striking a balance between updates rate and updates quality, Stale Syn-

chronous Parallel (SSP) model [24, 6, 27] is proposed as a middle ground between the

ASP and BSP approach. In the SSP model, workers synchronize only when the staleness of

parameters (measured by the number of missing updates from stragglers) exceeds a cer-

tain threshold. While this allows fast workers to use relatively fresher parameters, it pro-

vides little benefit for straggling machines. Consequently, updates generated by slowed

machines may harm rather than benefit the training progress [26].

1.2.2 Cross-silo FL with HE

Although HE provides a strong privacy guarantee for cross-silo FL, it performs complex

cryptographic operations (e.g., modular multiplications and exponentiations) that are ex-

tremely expensive to compute. Our testbed characterization shows that more than 80%

of the training iteration time is spent on encryption/decryption. To make matters worse,

encryption yields substantially larger ciphertexts, inflating the amount of data transfer

by over 150⇥ than plaintext learning. The significant overhead of HE in encryption and

communication has become a major roadblock to facilitating cross-silo FL. According to

our contacts at WeBank [28], most of their FL applications cannot afford to use the en-

crypted gradients and are limited to scenarios with less stringent privacy requirements

(e.g., FL across departments or trustworthy partners). Existing work [29] proposes to use

a dedicated hardware device (e.g., FPGA) for accelerated encryption/decryption, but the

reported speedup remains insufficient given the dominance of the encryption overhead.
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1.2.3 Preserving Both Data and Model Privacy

Model confidentiality is mostly unconsidered in prevalent solutions for collaborative ML,

such as federated learning [13, 30, 14] and split learning [31, 32], where the training model

needs to be shared fully or partially among participants.

Trusted hardware, such as Intel Software Guard Extensions (SGX) [33], has been used

for collaborative ML with privacy guarantees for both data and model owners. A common

approach is to perform ML training inside a single SGX enclave, where training data and

the model are loaded first [34]. However, this solution does not scale to large models

nor large training datasets, due to the restricted size of the enclave page cache (EPC) and

excessive cryptographic overheads. Other approaches [35, 36, 37] manage to distribute

training amongst multiple enclaves but operate under a weaker threat model, thus is not

sufficient for protecting both data privacy and model confidentiality.

1.3 Contributions

In this dissertation, we strive to identify the fundamental system design and performance

issues in the three important large scale ML system deployment scenarios, and come up

with effective solutions. We summarize our key contributions as follows.

1.3.1 SpecSync: Speculative Synchronization for High Efficiency

To begin with, we explore a new aspect to improve the efficiency of distributed ML. We

observe that in asynchronous training, a worker pulls fresh parameters from servers only

before the start of each iteration, which hides all the updates from other workers during

the iteration. Following this observation, we propose speculative synchronization (Spec-

Sync), where each worker speculates about the parameter updates from others, and if

necessary, it aborts the ongoing computation, pulls fresher parameters to start over, so

as to opportunistically improve the quality of training. Our evaluations show that Spec-

Sync can significantly accelerate the training speed by up to 3⇥without compromising on

training accuracy.
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1.3.2 BatchCrypt: Efficient HE for Cross-Silo Federated Learning

Next, we enable efficient cross-silo FL with HE using a simple batch encryption technique.

Gradients are first quantized, coded into long integers so that the encryption overhead is

significantly reduced. First, we design a customized quantization scheme just for FL,

which is less prone to overflowing and more flexible to decrypt. Second, as gradients

values are unbounded, they must be clipped before quantization. We propose an efficient

analytical model dACIQ by extending ACIQ [38], a state-of-the-art clipping technique for

ML over centralized data, to cross-silo FL over decentralized data. dACIQ allows us to

choose optimal clipping thresholds with the minimum cumulative error. Compared with

the stock implementation, BatchCrypt accelerates cross-silo FL training by up to 2 orders

of magnitudes. In the meantime, the communication overhead is reduced by up to 100⇥.

The significant benefits of BatchCrypt come at no cost of model quality, with a negligible

accuracy loss less than 1%.

1.3.3 Citadel: Protecting Data Privacy and Model Confidentiality with
SGX

Finally, we present a novel scalable system design Citadel to provide both data and model

confidentiality for collaborative learning. First, to earn data owners’ trust while protect-

ing model confidentiality, we introduce two methods, zero-sum masking and hierarchical

aggregation, to isolate codes handling data and model, and run the two parts in separate

enclaves. Therefore, only codes that have direct access to data shall be shared with data

owners to gain trust, while model handling codes remain private to model owner. Second,

with data processing codes singled out, we can scale multiple such enclaves concurrently

to process data in parallel, and aggregate the intermediate results together to update the

model. Third, we employ techniques like hierarchical aggregation, multi-threading with

a pre-compiled C library to make ML workloads adapt to SGX’s memory constraints. We

implement Citadel atop SCONE [39], and confirm that it can effectively speed up training

by adding more enclaves. With 32 training enclaves running, we can boost the throughput

to 4.7⇥–19.6⇥ of those running in a single enclave.
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1.4 Thesis Outline

The remainder of this dissertation is organized as follows. In §2, we present SpecSync, a

novel distributed training synchronization scheme that improves efficiency. In §3, we pro-

pose BatchCrypt to achieve efficient and secure cross-silo FL. In §4, we showcase Citadel,

a scalable collaborative training system that ensures both data privacy and model confi-

dentiality with SGX. We make the final remarks in §5.
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CHAPTER 2

SPECULATIVE SYNCHRONIZATION
FOR FAST DISTRIBUTED MACHINE LEARNING

In this chapter, we first look at the inefficiency problem in distributed ML.

2.1 Background and Motivation

In this section, we briefly introduce the background of distributed machine learning (ML)

and the means to facilitate it in large clusters through the Parameter Server (PS) architec-

ture [5, 6, 7, 8, 9].

2.1.1 ML Problems Solved by Risk Minimization

In many learning problems, the input is a training dataset D consisting of n samples. A

sample is a vector where each component characterizes a learning feature. Each sample x

is associated with a label y. The objective of learning is to find a model with parameters

w that correctly predicts label y given sample x. The learned model can then be used to

predict y for any future x not seen in the training dataset.

To learn the model, the training algorithm solves a risk minimization problem. In partic-

ular, we define a loss function l(x,y,w) that measures the prediction error (risk) if model

w is used to predict label y given sample x. Our goal is to find the best model w that

results in the minimum prediction errors over the entire training samples, i.e.,

minimizew
P

x2D l (x,y,w). (2.1)

2.1.2 Parameter Server and Distributed SGD

To expedite training ML models on very large data sets, distributed ML systems have been

proposed where the training is distributed over a cluster of commodity machines [5, 8, 6].
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Figure 2.1: The architecture of Parameter Server (PS).

The recently proposed Parameter Server (PS) architecture can be employed to facilitate

the system design [5, 6, 7, 8, 9].

As shown in fig. 2.1, in the PS-based systems, training samples D are partitioned into

a number of subsets D1,D2, . . . ,Dm, each maintained by a worker machine. The model

parameters are sharded across multiple servers, and can be accessed by all workers. Each

worker also maintains a local replica of model parameters and iteratively refines it based

on its own training samples. Periodically, workers push their local updates to servers,

jointly refining the global parameters. The worker then pulls the most up-to-date param-

eters from servers and proceeds to the next iteration of training.

More precisely, workers perform distributed SGD (stochastic gradient descent) with

data parallelism [40] in the PS-based ML systems. Each worker i iteratively passes over its

own training samples Di. In each pass, the worker calculates the subgradient rl(x,y,w)

for each sample x and updates the model with

w w- ⌘
P

x2Di
rl(x,y,w), (2.2)

where ⌘ is the learning rate. Every time a worker pushes an update, we say it finishes one

iteration; when all workers finish an iteration, we say the training has gone through one

epoch.

2.1.3 Synchronization Schemes

Asynchronous Parallel (ASP). Most popular PS-based ML systems [5, 6, 7, 8, 9] adopt

Asynchronous Parallelism when perform distributed SGD, where each worker eagerly

proceeds to the next iteration without waiting for the parameter updates from other work-

ers. ASP-style execution fully exploits the computing cycles, maximizing the rate of up-

date. However, the price paid is the compromised quality of learned models. In cluster
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environments, it is common to have workers process training samples at different speeds

and make push and pull requests at different rates. This results in inconsistent model

replicas among workers. By the time a fast worker finishes one iteration and pulls pa-

rameters from servers, some slowed machines may remain in the middle of iteration. The

fast worker hence misses the updates from those machines and proceeds to the next it-

eration with stale version of parameters. Training with stale parameters may poison the

algorithm throughput as pointed in the literature [25], compromising training quality.

Bulk Synchronous Parallel (BSP) comes as an alternative scheme that enforces a consis-

tent, up-to-date view of global parameters across workers. With the BSP scheme, workers

synchronize at the end of each iteration and cannot proceed until all workers have pushed

updates to servers. The BSP scheme ensures quality updates from each iteration, and is

widely adopted in parallel analytics frameworks such as MapReduce [41], Spark [42], ML-

lib [43] and GraphX [44]. However, the BSP scheme incurs high synchronization overhead:

fast workers must wait for stragglers to complete, wasting their computing cycles in idle.

For this reason, the BSP scheme often performs poorly on large ML problems [24, 27].

Stale Synchronous Parallel (SSP) [24, 6, 27, 45] is proposed recently as a middle ground

between the ASP and BSP schemes. In the SSP scheme, workers can asynchronously start

next iteration with stale parameters, provided that the staleness (measured by the worker’s

progress ahead of the straggler) is within a bounded amount. The SSP scheme allows fast

workers to timely discover updates from slowed machines, and is shown to provide a

convergence guarantee as opposed to the ASP approach [24]. However, slowed workers

may still lag behind with a rather inconsistent view to the global parameters. Prior work

[26] shows that updates from slowed workers are often harmful rather than beneficial,

especially when the parameters are coming close to the optimum. In fact, popular ML

systems like TensorFlow [9] and MXNet [7] choose not to implement SSP based on the

claim that only in rare cases can the improvement on training speed or convergence be

observed [46].

To summarize, relaxed synchronization schemes can effectively speed up distributed

learning, but at the cost of compromised quality due to inconsistent model replicas among

10
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Figure 2.2: Asynchrony hides pushes after a pull (PAP). Worker-1 misses more PAP than
anyone else and ends up with the most outdated parameters.

workers [45]. This motivates us to propose a new approach to accelerate asynchronous

distributed learning by enabling more up-to-date views of global parameters across work-

ers.

2.2 Staying Fresh through Naïve Waiting

In this section, we examine the behaviors of asynchronous learning through empirical

studies and explore a new aspect to keep parameters fresh in computation.

2.2.1 Pushes after a Pull: The Source of Staleness

Without synchronization, each worker eagerly pulls parameters to start next iteration, and

will miss the following pushes made by others before the next pull. That is, asynchrony

hides pushes after a pull (PAP)—the main source where staleness derives. Fig.2.2 illustrates

an example. The parameters worker-1 pulls at time t1 have received only one update from

itself, while the ones worker-2 pulls include four updates from all workers and are much

fresher. In fact, worker-1 has the most outdated parameters, as it misses more PAP than

anyone else.

Intuitively, to stay fresh, a worker should uncover more recent pushes made by others.

A simple way to do so is to defer the pull request by a small amount of time, to capture more

recent pushes that are otherwise invisible. In the previous example, delaying the pull

request of worker-1 to t2 exposes the two pushes from worker-3 and worker-4, enabling a

more up-to-date view of the global parameters.

However, the deferral of a pull request inevitably delays the start of an iteration, lead-
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Figure 2.3: Distribution of the number of pushes received in a time interval after a pull is
made (PAP). Each interval spans one second.

ing to longer completion time. Without a careful control, the harm caused by the delay

may outweigh the benefits derived from fresher parameters. Therefore, whether defer-

ring a pull request is beneficial critically depends on how many pushes are expected to be

made shortly after the pull.

We investigate this issue through an empirical study using a real ML application. We

trained a deep residual network with CIFAR-10 dataset [47] in MXNet [7], deployed in an

Amazon EC2 cluster consisting of 40 m4.xlarge instances.1 The training is performed

in an ASP model. We collected the workload traces and analyzed how many pushes were

made by others between two consecutive pulls of a worker (i.e., the number of missing up-

dates in one iteration). In our experiment, an iteration typically spans around 14 seconds.

We further divide an iteration into several 1-second intervals (i.e., 0-1s, 1-2s, etc.), and for

each interval, we count the number of PAP received in it. We show the distribution of

each interval as a box plot in fig. 2.3, where boxes depict 25th, 50th, and 75th percentiles,

and whiskers depict 5th and 95th percentiles. We observe approximately uniform arrivals

of PAP in each interval. In particular, if we focus on the number of pushes received within

two seconds after a pull is made (the first two boxes in fig. 2.3), the median is over 6. That

is to say, by delaying the pull request by 14% of the iteration time, we can allow 50% of

workers to include at least 15% of recent updates. These promising numbers suggest that

a slight delay of iteration is sufficient to discover more fresh parameters.

1In MXNet, each node is both a worker and a server.
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Figure 2.4: Naïve waiting defers each pull request by a short period of time, allowing
worker-1 (and others) to uncover more updates than it could have had in fig. 2.2.

(a) CIFAR-10 (b) Matrix Factorization

Figure 2.5: Convergence curves of naïve waiting with different delay times. Curves with
zero delay correspond to the stock MXNet implementation.

2.2.2 Naïve Waiting

Motivated by our empirical studies, we propose a simple strategy which we call naïve wait-

ing. As the name suggests, each worker simply delays its pull requests by a short period of

time, so as to uncover more pushes that are otherwise invisible. Fig. 2.4 illustrates naïve

waiting applied to the example in fig. 2.2. We see that a slight delay of pulls allows all

workers to include more updates in their parameters than they could in fig. 2.2: worker-1

now uncovers three updates (highlighted in fig. 2.4), while the other three workers get all

four (not shown in fig. 2.4).

To quantify the benefits of naïve waiting in real-world systems, we implemented it in

MXNet 0.7 [48] and evaluated its performance in an EC2 cluster composed of 40 m4.xlarge

instances. We ran two benchmarking ML workloads: a deep residual network with CIFAR-

10 dataset [47] and matrix factorization with MovieLens dataset [49]. For each workload,

we configured naïve waiting with different delays and compared their impacts to the per-
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Figure 2.6: Illustration of speculative synchronization. Worker-1 speculatively aborts com-
putation after observing the two pushes made by two peers. It pulls parameters again and
starts over.

formance. Fig. 2.5 depicts the learning curves of the two ML workloads. By delaying each

pull request by 1 second, both workloads achieve significant performance improvements.

However, as the delay increases, more computing cycles get wasted, and the performance

deteriorates. As illustrated by the CIFAR-10 workload in fig. 2.5a, delaying each pull re-

quest by 3 seconds yields little benefit over the original implementation; further increasing

the delay to 5 seconds even does more harm than good.

To summarize, our experiments confirm that simply deferring each pull request to

expose more fresh parameters can be beneficial. However, such a benefit is conditioned

on finding the “right” delay time, which by itself is technically non-trivial. In fact, naively

deferring each pull request may not always be justified—more often than not, the delay

may expose only a few new updates. We therefore give up on naïve waiting and turn to a

new approach to avoid unjustified delay.

2.3 Speculative Synchronization

In this section, we present a new scheme, called speculative synchronization (SpecSync),

which allows workers to speculatively abort the ongoing computation and start over with

fresher parameters. We model the gain and loss due to speculative re-execution, based on

which we propose an effective heuristic algorithm to determine when to restart computa-

tion for workers. SpecSync can be implemented in both ASP and SSP models, complement-

ing existing solutions with improved performance.
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2.3.1 Overview

Key idea. Instead of imposing an arbitrary delay without justification, we let the worker

asynchronously proceed to the next iteration immediately, while at the same time spec-

ulating about the updates made by others. Once the worker learns that the global pa-

rameters have been updated “enough” times, it will abort the ongoing iteration, pull the

fresher parameters to start over—if that is not too late yet.

Continuing the example in fig. 2.2, we apply speculative synchronization and illustrate

workers’ behaviors in fig. 2.6. We start to focus on worker-1. After finishing the first itera-

tion, it pulls parameters and starts the next iteration immediately. Shortly after it starts, it

learns that two other peers have pushed updates to servers (highlighted in fig. 2.6), which

it views as a significant-enough change made to the global parameters. Worker-1 hence

aborts the ongoing iteration, re-synchronizes with servers to include those two recent up-

dates, and starts over with much fresher parameters. The abort-and-restart decision is

also made by worker-4 upon its notice of two updates pushed shortly after the second it-

eration starts. In contrast, workers 2 and 3 choose not to restart as they do not see enough

updates (two in this example) pushed to servers since their last pulls.

Benefits. SpecSync offers two benefits.

1) It avoids unjustified delays, minimizing the cost of wasted computing cycles due to abortion.

With SpecSync, an iteration gets restarted only when the global parameters have under-

gone significant enough updates within a short period of time after the iteration begins.

When that happens, the improved quality of refinement brought by fresher parameters

will surely outweigh the cost of slightly delayed computations.

2) SpecSync can be flexibly implemented in both ASP and SSP models, complementing them

with improved performance. In fact, the only difference between ASP and SSP is that the

latter enforces bounded staleness in that fast workers must wait for slowed ones to catch

up. With SpecSync implemented in the SSP model, workers can actively seek opportunities

to restart computation with fresher parameters, before the staleness bound is reached.

This also gives slowed workers a chance to timely capture updates from fast peers by

aborting computations, ensuring a more consistent view of global parameters. As a result,

the quality of updates generated by straggling workers can be improved dramatically.
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Challenges. However, to facilitate SpecSync, there are two major challenges we should

address.

1) How can we efficiently notify each worker when the global parameters are updated by others,

without incurring high communication overhead? Simply broadcasting each worker’s push

notification to others causes all-to-all communications, and is too expensive to implement.

We shall address this challenge in §2.4 through a centralized system architecture, where a

scheduler oversees pushes from all workers and notifies each when the global parameters

have been updated sufficient times since its last pull.

2) As the global parameters are refined, how can we determine, for each worker, when to abort

computation and start over? We employ a simple speculation strategy with two hyper-

parameters: ABORT_TIME and ABORT_RATE. In particular, after starting an iteration, a

worker speculates about the parameter updates made in a time period of length ABORT_TIME.

The worker counts the number of pushes made by others in that speculation period, and

normalizes the count by the total number of workers to obtain the push rate. If the push

rate exceeds ABORT_RATE, the worker is convinced that the global parameters have un-

dergone significant updates since its last pull. The worker then aborts the ongoing com-

putation, re-synchronizes with servers, and starts over.

The optimal setting of ABORT_TIME and ABORT_RATE is specific to the workload and

cluster configuration. The choices of the two hyperparameters critically determine the

performance of speculative synchronization. The question is: given a learning workload,

how can we judiciously choose the two hyperparameters that lead to the optimal perfor-

mance? Of course we can adopt the conventional ML hyperparameter tuning techniques

like grid search and Cherrypick [50], However, such approach is time and money con-

suming thanks to the profiling steps, making it hard for agile adoption. Consequently,

we try to find an efficient way to tune the two hyperparameters on the go efficiently and

effectively in the next section.

2.3.2 Adaptive Hyperparameter Tuning

To achieve the optimal performance of SpecSync, we propose a heuristic algorithm that

adaptively tunes the two hyperparameters. We start with a problem formulation.
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Problem formulation. Suppose that worker i restarts an iteration after a speculation

period. Worker i gains by uncovering more recent updates that are otherwise invisible,

at the expense of a delayed computation. Such a delay may hide worker i’s update from

being captured by others. By the time worker i pushes an update, it would be too late

for some other workers to capture that refinement, which in turn harms the parameter

freshness of those workers.

In our model, we measure the freshness gain by the number of updates others pushed

in the speculation period, and the freshness loss by the number of missed peers, which are

workers that missed the (delayed) push of the speculator. More precisely, we divide time

into epochs. Let � denote the ABORT_TIME used in epoch ⌧. For worker i, let ui,⌧(�) be

the number of updates it uncovers during its speculation period. The value of ui,⌧(�)

measures the freshness gain. Let li,⌧(�) be the number of missed peers, which quantifies

the freshness loss. Worker i hence makes a freshness contribution ui,⌧(�)- li,⌧(�). To make

a positive contribution, worker i aborts the computation only when the gains outweighs

the loss, i.e., ui,⌧(�) > li,⌧(�). We shall discuss later how this can be achieved by correctly

choosing an ABORT_RATE.

Summing up the contribution over all workers, we obtain the overall freshness improve-

ment due to speculative synchronization, i.e.,

F⌧(�) =
mX

i=1

(ui,⌧(�)- li,⌧(�)) . (2.3)

Our goal is to find the optimal � at the beginning of each epoch that maximizes the overall

freshness improvement:
maximize�F⌧(�). (2.4)

Estimating gain and loss. Unfortunately, Problem (2.4) cannot be directly solved in

practice, as the exact computation of ui,⌧(·) and li,⌧(·) requires knowing the complete

push/pull sequence in epoch ⌧ before the epoch starts. We therefore turn to estimations

of the gain and loss.

In particular, to estimate how many updates worker i will uncover after a speculation

period �, we simply refer back to the previous epoch and count the number of updates
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the worker would have uncovered if it had deferred its last iteration by �. More precisely,

we estimate ui,⌧(�) as
ũi,⌧(�) = ui,⌧-1(�), (2.5)

where ũi,⌧(·) is an estimation of ui,⌧(·). Our insight is that the algorithmic behaviors and

machine performance are usually stable in a short period of time. Therefore, the freshness

gain computed based on the push history in the previous epoch can be used as a good

approximation to that in the current epoch.

Ideally, we can use the same approach to estimate freshness loss, i.e., l̃i,⌧(�) = li,⌧-1(�).

However, simply using the push history in epoch ⌧- 1 may not be sufficient to compute

li,⌧-1(�). In fact, assuming the worker deferred its last iteration by �, it is possible that the

iteration would still be running now, and the freshness loss caused by that delay cannot

be fully characterized until the iteration completes.

Unable to make use of historical traces, we simply estimate freshness loss li,⌧(�) as the

expected number of missed peers assuming uniform arrivals of pull requests. While this technical

assumption may not always hold in practice, it simplifies the analysis and makes the

problem tractable. We shall show in §2.5 that despite this technical assumption, our

solution can still achieve near-optimal performance in a number of ML applications.

Specifically, let Ti,⌧ be the iteration span of worker i in epoch ⌧, which can be accurately

predicted from history. Deferring the iteration by � hides the worker’s update from be-

ing captured by another with probability �

Ti,⌧
. Therefore, the expected number of missed

peers, or the estimate of freshness loss, is

l̃i,⌧(�) =
�

Ti,⌧
(m- 1). (2.6)

Substituting the gain and loss by their estimates, we obtain an estimate of the overall

freshness improvement:

F̃⌧(�) =
mX

i=1

✓
ũi,⌧(�)-

m- 1
Ti,⌧

�

◆
. (2.7)

Hyperparameter tuning. Directly searching the optimal � to maximize improvement

estimate F̃⌧(�) can be difficult, as Eq. (2.7) is non-convex. We present an efficient algorithm

that optimally solves this problem. Our key observation is that, to maximize Eq. (2.7), it is
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Algorithm 1 Adaptive Tuning
– m: number of workers
– T : averaged iteration span

1: function TUNEPARAM
2: l sequence of all pushes made in the last epoch
3: {�} time difference between all pairs of pushes in l

4: for � 2 {�} do
5: F computation result of Eq. (2.7)
6: if F is maximal then
7: ABORT_TIME �

8: ABORT_RATE �(m- 1)/Tm

sufficient to search a finite number of �. To see this, consider worker i, and let � gradually

increase from 0. By definition, ũi,⌧(�) increments only when the increase of speculation

period exposes one more push from another worker. Therefore, ũi,⌧(�) is a step function.

Also note that the estimate of freshness loss (cf. Eq. (2.6)) linearly increases with �. Putting

them together, the freshness contribution (gain minus loss) reaches the maximum only if

the speculation interval right aligns with a push. It is easy to see that there are O(m2)

such intervals in total, where m is the number of workers. We can therefore enumerate

all candidate � and choose the one that maximizes Eq. (2.7). Algorithm 1 illustrates the

details, with time complexity O(m3).

Once the optimal �⇤ is found (ABORT_TIME), we set ABORT_RATE so that workers

abort computation only when the gain outweighs the loss. Specifically, let � denote the

ABORT_RATE used by worker i. By our scheme, worker i aborts computation if the num-

ber of updates received during the speculation period exceeds �m. We therefore set

� = l̃i,⌧(�
⇤)/m to ensure that re-execution always makes a positive contribution to the

overall freshness improvement.

The experimental evaluation in §2.5 verifies that our heuristic approach achieves near-

optimal speedup for many ML applications even compared with the scheme using the

optimal hyperparameters cherry-picked via exhaustive search.

2.4 Implementation

In this section, we present our implementation of SpecSync atop MXNet [7, 48], a pop-

ular ML framework employing the parameter server (PS) architecture. While we base

19



Worker

Server Server

Worker Worker

Scheduler

push & pull

notify

re-sync

Figure 2.7: The architecture of speculative synchronization.

our implementation on MXNet, nothing precludes it from being ported to other PS-based

systems such as TensorFlow [9].

2.4.1 Architecture Overview

Centralized implementation. We employ a centralized implementation for SpecSync. As

shown in fig. 2.7, our implementation consists of three components: workers, servers,

and a centralized scheduler. At the beginning of an iteration, a worker pulls model pa-

rameters from servers and starts computation. In the meantime, the worker delegates the

speculation job to the centralized scheduler which oversees the parameter updates from

others and notifies the worker when it is time to re-synchronize. Upon receiving an in-

struction from the scheduler, the worker pulls fresh parameters from servers and restarts

the computation. After an iteration completes, the worker pushes the computed update

to servers, and notifies the scheduler. This way, the scheduler can keep track of pushes

made by all workers, enabling it a global view to perform speculation for each worker.

Benefits. The centralized implementation offers two benefits over a direct implementa-

tion where each worker performs speculation individually. First, it eliminates the need for

all-to-all communication among workers, which is unavoidable in the direct implementa-

tion as each worker must broadcast a push notification to all others. In contrast, workers

in the centralized architecture only report to the scheduler. We shall show in §2.5 that the

communication overhead incurred among workers and the scheduler is negligible. Sec-

ond, in the centralized architecture, only the scheduler needs to maintain a global view

of the push history of workers. However, in the direct implementation, this information

must be separately maintained by each worker, leading to unnecessary storage redun-

dancy.
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Algorithm 2 Speculative Synchronization
Workers: i = 1, 2, . . . ,m
1: function WORKERSTARTSEPOCH(e)
2: Pull model parameters w(e,0) from servers
3: for all training batch t = 0, 1, 2, · · · , T do
4: Start computing gradient g(e,t)

i in a non-blocking manner
5: if worker receives re-sync during computation then
6: Abort computation and pull w(e,t) from servers
7: go to 4 . Restart compution
8: Push g

(e,t)
i to servers

9: Pull w(e,t+1) from servers
10: Send notify to scheduler
Scheduler:

– l: a list of timestamps of all pushes
1: function STARTSTRAINING
2: for epoch e = 0, 1, 2, ...,E do
3: Issue WORKERSTARTSEPOCH(e) to all workers
4: function HANDLENOTIFICATION(msg)
5: Append current timestamp to l

6: Call CHECKRESYNC(msg.sender) after ABORT_TIME
7: function CHECKRESYNC(senderId)
8: cnt number of pushes received within ABORT_TIME

9: if cnt > m⇥ ABORT_RATE then . Time to re-synchronize
10: Issue re-sync to the worker with senderId

2.4.2 Workflow

We elaborate on the implementation of each component, following the workflow of Spec-

Sync illustrated in algorithm 2.

Workers communicate with the scheduler through two dedicated messages: notify and

re-sync. A notify message simply contains a senderId and is sent to the scheduler

by a worker upon the completion of an iteration. The notify message triggers the spec-

ulation on the scheduler. At the same time, the worker pulls parameters from servers

and proceeds to the next iteration, during which the worker expects a re-sync message

from the scheduler to re-synchronize with servers and start over. Once the iteration com-

pletes, the worker pushes update to servers, sends a notify message to the scheduler,

and repeats the entire process.

Servers are agnostic to speculative synchronization performed by workers and the sched-

uler. Their behaviors remain the same as in the stock MXNet, and is not shown in algo-

rithm 2.
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Table 2.1: Models and datasets used for workloads. The iteration time is based on
m4.xlarge instance.

Workload # parameters Dataset Dataset size Iteration time
MF 4.2 million Movielens 100,000 3s

CIFAR-10 2.5 million CIFAR-10 50,000 14s
ImageNet 5.9 million ImageNet 281,167 70s

(a) (b) (c)

Figure 2.8: Loss (left plot in each sub-figure) and runtime (right plot in each sub-figure)
comparison of (a) MF, (b) CIFAR-10, and (c) ImageNet. For better visualization, we only
show the results up to when one of the approaches is converged (i.e., loss is below the
target value for 5 consecutive iterations).

Scheduler keeps track of pushes made by workers through notify messages and per-

forms two jobs. First, it computes the two hyperparameters ABORT_TIME and ABORT_RATE

at the beginning of each epoch using algorithm 1. Second, it implements the logic of

SpecSync on behalf of each worker. Specifically, it maintains a push counter and a timer for

each worker. Upon receiving a notify message from a worker, the scheduler appends

it to the push history and kicks start the speculation for the sender. To do so, it resets

the push counter of the sender and starts the corresponding timer which will expire in

ABORT_TIME. During the speculation period, the push counter increments whenever a

notify message is received. Upon the timer expires, the scheduler checks whether the

counter is more than m⇥ABORT_RATE, where m is the number of workers. If so, the

scheduler instructs the worker to re-synchronize through a re-sync message, as enough

updates have been pushed since the worker’s last pull.
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2.5 Evaluation

We conduct extensive experimental evaluations to validate the effectiveness and robust-

ness of the proposed SpecSync. We first compare the accuracy and runtime of SpecSync

with the default synchronization scheme of MXNet. Then we demonstrate the robustness

of SpecSync in terms of handling heterogeneity and scalability. We examine the commu-

nication overhead afterward. Finally, we discuss the advantage of hyperparameter tuning

with respect to the algorithm efficiency and adaptivity.

2.5.1 Experiment Setup

Workloads. We use three different workloads to drive the experiments for evaluation,

and we summarize them in table 2.1. For the first workload, we use MovieLens[49] as the

dataset to train a recommendation system with matrix factorization (MF), the batch size

is set to 100,000. We train a 110-layer deep residual network [51] with CIFAR-10 dataset

as the second workload. To achieve the best performance, we set the batch size to 128 and

let the learning rate decrease from an initial value 0.05 at epochs 200 and 250, respectively

[52]. Finally, we train an 18-layer deep residual network with ImageNet dataset [53]. The

batch size is set to 128 and the learning rate is set to 0.3. We choose the above workloads

because they represent different characteristics of popular ML applications. For example,

the input data of CIFAR-10 and ImageNet are pictures represented by dense vectors, while

the input data of MF are user ratings represented by sparse vectors. The training data set

size and model size of the above workloads are also representative from small to large

applications with iteration time spanning from a few seconds to more than one minute.

Testbed. We build clusters on Amazon EC2 for running experiments. We use a 40-node

cluster (Cluster 1) for effectiveness evaluation, which is composed of 40 m4.xlarge in-

stances. This cluster is for the scenario of asynchronous distributed learning on homoge-

neous hardware. We build a heterogeneous cluster (Cluster 2) for evaluating SpecSync’s

ability to deal with heterogeneity, which consists of 10 m3.xlarge, 10 m3.2xlarge, 10

m4.xlarge, and 10 m4.2xlarge instances. To evaluate SpecSync’s scalability, we use

3 clusters with 20, 30 and 40 m4.xlarge instances respectively. All the instances run
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Ubuntu Server 16.04 LTS, and are configured to run our extended MXNet 0.7.

Schemes. We use three different synchronization schemes in our evaluation. (1) Orig-

inal: default asynchronous synchronization scheme provided by MXNet. (2) SpecSync-

Cherrypick: the cheerypick version (i.e., tune the ABORT_TIME and ABORT_RATE hyper-

parameters using grid search) of the proposed speculative synchronization, which is built

on top of the asynchronous synchronization scheme provided by MXNet. (3) SpecSync-

Adaptive: the adaptive version (i.e., tune the hyperparameters adaptively) of the pro-

posed speculative synchronization, which is also implemented based on the asynchronous

synchronization scheme provided by MXNet.

2.5.2 Effectiveness of SpecSync

We first evaluate the effectiveness of the proposed SpecSync on Cluster 1 with three dif-

ferent workloads outlined in table 2.1. We report two metrics: loss change over time

(for accuracy evaluation) and runtime to convergence (for runtime performance evalua-

tion), and present the results in fig. 2.8. Runtime is measured as the timespan from the

beginning of training to convergence, where convergence is defined as the loss staying

below the target value for 5 consecutive iterations. By comparing the results of different

schemes, it is clear that the proposed SpecSync can significantly speed up the training pro-

cess, i.e., up to 2.97⇥ speedup for MF, up to 2.25⇥ speedup for CIFAR-10, and up to 3⇥
speedup for ImageNet. The results also demonstrate that even though SpecSync-Adaptive

is not able to achieve the same performance as SpecSync-Cherrypick, the difference is very

small, which verified the effectiveness of the proposed adaptive algorithm. We also notice

for SpecSync-Adaptive, the learning curves (loss as a function of time) has more jitter at

the beginning than SpecSync-Cherrypick, this is due to the adaptive nature of SpecSync-

Adaptive.

With SpecSync, when re-synchronization occurs during an iteration, the length of the

iteration becomes longer, but the training quality of the iteration is improved due to the

fresher parameters used for training, so the overall training speed becomes faster. To

demonstrate this, we plot the loss as a function of the iteration number and the accumu-

lated iteration number for different schemes in fig. 2.9. The comparison results shows that
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it takes up to 58% fewer iterations for SpecSync to converge compared with Original. The

effectiveness of SpecSync varies across models, as models have different sesitivity levels

towards staleness. Such an improvement suggests that with SpecSync, the quality of com-

puting is improved while the efficiency of utilizing the distributed computing power by

asynchronous learning is preserved.

Figure 2.9: Loss as a function of iteration number (left plot) and accumulated iteration
number (right plot) for different synchronization schemes using CIFAR-10.

2.5.3 Robustness of SpecSync

Heterogeneity. In distributed machine learning, heterogeneity (caused by various fac-

tors from hardware resources to software failures) can result in inconsistent training progress

among workers and therefore slows down the training speed [26]. Here we conduct ex-

periments using a heterogeneous cluster (Cluster 2), which consists of 4 different instance

types, to evaluate SpecSync’s robustness in the presence of heterogeneity. In the interest

of space, we only show the results of CIFAR-10 in fig. 2.10. From the loss plot, it is clear

that SpecSync-Adaptive outperforms Original in both homogeneous and heterogeneous

clusters.2 The results also verified that the heterogeneity could slow down the training

speed. Heterogeneity slows down BSP because it increases synchronization overhead as

fast workers need to wait for stragglers to complete in each iteration. ASP and SSP also

suffer from heterogeneity because the staleness gap between workers is intensified due to

the mismatch in training speed, which makes the convergence slower. SpecSync-Adaptive

actively improves the freshness of parameter replica to alleviate inconsistency between

workers compared to ASP and SSP, and does not have the synchronization issue of BSP,

2Given we have already verified the difference between SpecSync-Adaptive and SpecSync-Cherrypick is
small, for clear presentation, we do not show the results of SpecSync-Cherrypick in all following plots.
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thus being more robust to heterogeneity. Another interesting observation is the speedup

of SpecSync-Adaptive over Original is smaller compared to the same experiments on ho-

mogeneous cluster as shown in fig. 2.8b. This is because our adaptive tuning approach

assumes uniform arrivals of pull requests, but in heterogeneous environment, the arrival

becomes less uniform, so the quality of the tuned hyperparameters deteriorates.
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Figure 2.10: Loss comparison for different synchronization schemes running CIFAR-10 in
both homogeneous and heterogeneous clusters.

Scalability. We perform sensitivity analysis for cluster size to evaluate the scalability of

the proposed SpecSync-Adaptive. We show results for two scenarios that are commonly

used in practice. The first scenario is when machine learning practitioners with clear train-

ing target in mind. So, we demonstrate the speedup of SpecSync-Adaptive over Original

in runtime for achieving the same target training accuracy of CIFAR-10 using cluster size

of 20, 30, and 40, respectively (the left plot of fig. 2.11). The second scenario is usually

for the case with fixed budget and aims to achieve the best training accuracy under the

given budget (e.g., rent cloud instances for a time period that can be fit into the given

budget). Therefore, we compare the loss improvement of SpecSync-Adaptive over Orig-

inal when training CIFAR-10 for the same amount of time using different cluster sizes as

shown in the right plot of fig. 2.11. It is clear that in both scenarios, SpecSync-Adaptive

consistently outperforms Original running with different cluster size. More importantly,

when the cluster size grows, the improvement becomes even larger. This suggests that

SpecSync-Adaptive has better scalability than Original.
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Figure 2.11: Runtime speedup for achieving the same training accuracy target (left plot)
and loss improvement with the same training time (right plot) for SpecSync-Adaptive
over Original using CIFAR-10 as workload under different cluster size.

2.5.4 Communication Overhead

SpecSync’s centralized design utilizes information available at servers to make the resyn-

crhonization decisions. Since SpecSync and its adaptive hyperparameter tuning do not

involve heavy computation, the main source of overhead is added communication due to

exchanging additional information between workers and parameter servers. Fig. 2.12 re-

ports the accumulated data transfer over time for different workloads using Original and

SpecSync-Adaptive. It is clear that the accumulated data transfer is very close between

SpecSync-Adaptive and Original at all times, meaning there is very little additional band-

width consumed by SpecSync-Adaptive. In addition, the overall training time is shorter

using SpecSync-Adaptive, so the total data transfer can be actually smaller compared to

Original, i.e., compare the right most points in fig. 2.12. Take CIFAR-10 as an example,

Original incurs a total data transfer of 3.17 TB while SpecSync-Adaptive only needs to

transfer 2.00 TB in total, a saving of nearly 40% of communication overhead.

Figure 2.12: Accumulated data transfer over time for different workloads under different
schemes.

27



We also refer to fig. 2.13 for the breakdown of overall data transfer incurred by SpecSync-

Adaptive in three parts: push and pull, which are the regular communication traffic (i.e.,

also in Original); the additional pulls triggered by re-synchronization; notifications in-

cluding notify and re-sync messages. The results indicate that the additional over-

head introduced by notification messages is marginal given the message size is quite

small. The main additional communication overhead is introduced by re-synchronization.

However, such overhead is compensated by the improved quality of training, thanks

to the fresher parameters. In general, for computation-bound workloads, SpecSync can

achieve higher computation efficiency as the training quality improves with fresher pa-

rameters, and therefore alleviates the computation bottleneck impact. For communication-

bound workloads, SpecSync automatically adjusts the speculative synchronization hyper-

parameters (e.g., ABORT_TIME and ABORT_RATE) so that the re-synchronization is per-

formed more conservatively to balance the freshness and network performance.

Figure 2.13: Overall data transfer breakdown for SpecSync-Adaptive.

2.5.5 SpecSync-Cherrypick vs. SpecSync-Adaptive

We evaluate SpecSync-Adaptive here against SpecSync-Cherrypick in terms of the over-

head of tuning hyperparameters. For SpecSync-Adaptive, there is little overhead as it

simply searches best hyperparameter through logged information (a short list of numbers)

using a closed-form estimation function (Eq. (2.7)), no additional profiling experiment is

needed. For SpecSync-Cherrypick, the hyperparameters are tuned through exhaustive

search with profiling experiments. Examples of total search time for different workloads

are shown in table 2.2. In the example, we search 10 different values of ABORT_RATE for

each workload. For ABORT_TIME, we try to minimize the number of trials by restrict-

ing the search range and increasing search step (e.g., we use half of the batch time as
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Table 2.2: Cost of hyperparameter exhaustive search using SpecSync-Cherrypick.

Workload # of trial for
ABORT_TIME

# of trial for
ABORT_RATE

Each trial
time (hour)

Total search
time (hour)

MF 3 10 1.33 40
CIFAR-10 7 10 6 420
ImageNet 10 10 > 8 > 800

upper bound and make sure the search step is greater than communication time). It is

clear that even with reasonable search range and step, the cost is still very high as each

experiment takes long time, and the accumulated cost becomes even higher. Therefore,

SpecSync-Adaptive has much lower search overhead for hyperparameter tuning. In ad-

dition, SpecSync-Adaptive adapts the hyperparameters for each iteration, which is more

robust than the fixed value solution of SpecSync-Cherrypick.

2.5.6 Discussion

The experimental study in this section is mainly based on CPU cluster. For GPU or other

architecture-based cluster, SpecSync is also compatible because the synchronization hap-

pens at node level, where the node can be a virtual concept, e.g., it can be a machine with

CPU or GPU, and/or it can be a CPU or GPU within a multi-CPU/GPU machine. In the

interest of space, we leave the detailed study for clusters with different hardware archi-

tecture as our future work. We also leave experimental study of other machine learning

applications and other machine learning frameworks as our future work.

2.6 Related Work

Many recent works have been proposed to improve the performance of existing synchro-

nization schemes employed in distributed ML systems. Notably, for the SSP-style ex-

ecution, Wei et al. [54] proposed a system called Bösen to maximize the communication

efficiency by prioritizing update messages that are the most significant to the final conver-

gence. SSP-style solutions passively curb the influnce of stale parameters by limiting the

inconsistency level, while SpecSync actively refreshes stale parameters based on specula-

tion instead. SSP and SpecSync try to address the inconsistency issue from two perspec-

tives, thus are orthogonal to each other. Harlap et al. [55] proposed FlexRR to mitigate the
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straggler problem by dynamically offloading the training work of straggling workers to

fast machines. For the ASP-style executions, Zhang et al. [56] proposed a staleness-aware

asynchronous SGD algorithm that achieves guaranteed convergence by dynamically ad-

justing the learning rate based on the gradient staleness. Jiang et al. [26] applied the sim-

ilar approach to heterogeneous clusters, where slowed workers are assigned lower learn-

ing rate to alleviate the negative impact of their updates. More recently, Chen et al. [57]

revisited the BSP model and suggested synchronous training of deep models with backup

workers, so as to mitigate the impact of stragglers. All those techniques are orthogonal to

our proposal and can be combined with SpecSync.

SpecSync is inspired by delay scheduling [58] used in MapReduce clusters, where map

tasks prefer to running on machines that can provide data locality. With delay scheduling,

the assignment of a task is delayed for a short period of time if its data locality cannot be

satisfied at the current moment. Unlike delay scheduling in MapReduce where the delay

is almost surely beneficial [58], we have shown in §2.2 that naïvely delaying each pull

request is not always justified (fig. 2.5). SpecSync is proposed to address this problem. In

fact, aborting and restarting a task is considered expensive for MapReduce jobs, and is

usually not an option to the scheduler.

2.7 Summary

In this chapter, we have investigated a new aspect to improve parameter freshness for

asynchronous distributed learning. We have proposed SpecSync where each worker spec-

ulates about the parameter updates pushed by others after an iteration starts. In case

that enough number of pushes have been made within a short period of time, the worker

aborts the ongoing iteration, re-synchronizes with servers, and starts over with fresher pa-

rameters. We have designed an adaptive hyperparameter tuning algorithm to judiciously

determine the span of speculation period and the threshold number of pushes beyond

which a re-synchronization is triggered. We have implemented SpecSync atop MXNet in

a centralized architecture with little extra communication overhead. Experimental evalu-

ations through EC2 deployment demonstrate that SpecSync achieves up to 3⇥ speedup in

three benchmarking ML workloads.
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CHAPTER 3

EFFICIENT HOMOMORPHIC ENCRYPTION FOR
CROSS-SILO FEDERATED LEARNING

Besides efficiency, privacy is another hurdle that challenges large scale ML training. In

this chapter, we focus on how to efficiently protect the data privacy for data owners in

cross-silo federated learning (FL).

3.1 Background and Related Work

In this section, we highlight the stringent privacy requirements posed by cross-silo feder-

ated learning. We survey existing techniques for meeting these requirements.

3.1.1 Cross-Silo Federated Learning

According to a recent survey [14], federated learning (FL) is a scenario where multiple

clients collaboratively train an ML model with the help of a central server; each client

transfers local updates to the server for immediate aggregation, without having its raw

data leaving the local storage. Depending on the application scenarios, federated learning

can be broadly categorized into cross-device FL and cross-silo FL. In the cross-device setting,

the clients are a large number of mobile or IoT devices with limited computing power and

unreliable communications [59, 14, 60]. In contrast, the clients in the cross-silo setting are a

small number of organizations (e.g., financial and medical) with reliable communications

and abundant computing resources in datacenters [13, 14]. We focus on cross-silo FL in

this chapter.

Compared with the cross-device setting, cross-silo FL has significantly more stringent

requirements on privacy and learning performance [13, 14]. First, the final trained model

should be exclusively released to those participating organizations—no external party, in-

cluding the central server, can have access to the trained model. Second, the strong privacy

31



guarantee should not be achieved at a cost of learning accuracy. Third, as an emerging

paradigm, cross-silo FL is undergoing fast innovations in both algorithms and systems.

A desirable privacy solution should impose minimum constraints on the underlying sys-

tem architecture, training mode (e.g., synchronous and asynchronous), and learning algo-

rithms.

3.1.2 Privacy Solutions in Federated Learning

Many strategies have been proposed to protect the privacy of clients for federated learn-

ing. We briefly examine these solutions and comment on their suitability to cross-silo FL.

Secure Multi-Party Computation (MPC) allows multiple parties to collaboratively com-

pute an agreed-upon function with private data in a way that each party knows nothing

except its input and output (i.e., zero-knowledge guarantee). MPC utilizes carefully de-

signed computation and synchronization protocols between clients. Such protocols have

strong privacy guarantees, but are difficult to implement efficiently in a geo-distributed

scenario like cross-silo FL [13]. Developers have to carefully engineer the ML algorithms

and divide the computation among parties to fit the MPC paradigm, which may lower the

privacy guarantees for better performance [61, 62, 63].

Differential Privacy (DP) is another common tool that can be combined with model av-

eraging and SGD to facilitate secure FL [15, 16]. It ensures the privacy of each individual

sample in the dataset by injecting noises. A recent work proposes to employ selective pa-

rameter update [16] atop differential privacy to navigate the tradeoff between data privacy

and learning accuracy. Although DP can be efficiently implemented, it exposes plain gra-

dients to the central server during aggregation. Later study shows that one can easily

recover the information from gradients [18]. While such privacy breach and the potential

accuracy drop might be tolerable for mobile users in cross-device FL, they raise significant

concerns for participating organizations in cross-silo FL.

Secure Aggregation [17] is proposed recently to ensure that the server learns no individ-

ual updates from any clients but the aggregated updates only. While secure aggregation

has been successfully deployed in cross-device FL, it falls short in cross-silo FL for two

reasons. First, it allows the central server to see the aggregated gradients, based on which
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Figure 3.1: The architecture of cross-silo FL system, where HE is implemented as a plug-
gable module on the clients.

the information about the trained model can be learned by an external entity (e.g., pub-

lic cloud running the central server). Second, in each iteration, clients must synchronize

secret keys and zero-sum masks, imposing a strong requirement of synchronous training.

Homomorphic Encryption (HE) allows certain computation (e.g., addition) to be per-

formed directly on ciphertexts, without decrypting them first. Many recent works [18,

19, 64, 65] advocate the use of additively HE schemes, notably Paillier [66], as the primary

means of privacy guarantee in cross-silo FL: each client transfers the encrypted local up-

dates to the server for direct aggregation; the result is then sent back to each client for

local decryption. HE meets the three requirements of cross-silo FL. First, it protects the

trained model from being learned by any external parties including the server as update

aggregation is performed on ciphertexts. Second, it incurs no learning accuracy loss, as

no noise is added to the model updates during the encryption/decryption process. Third,

HE directly applies to the existing learning systems, requiring no modifications other than

encrypting/decrypting updates. It hence imposes no constraints to the synchronization

schemes and the learning algorithms. However, as we shall show in §3.2, HE introduces

significant overhead to computation and communication.

To summarize, each of these privacy-preserving techniques has its pros and cons. MPC

is able to provide strong privacy guarantees, but requires expert efforts to re-engineer ex-

isting ML algorithms. DP can be adopted easily and efficiently, but has the downside of

weaker privacy guarantee and potential accuracy loss. Secure aggregation is an effective

way to facilitate large-scale cross-device FL, but may not be suitable for cross-silo FL as it

exposes the aggregated results to third parties and incurs high synchronization cost. HE

can be easily adopted to provide strong privacy guarantees without algorithm modifica-
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tions or accuracy loss. However, the high computation and communication overheads

make it impractical for production deployment at the moment.

3.1.3 Cross-Silo FL Platform with HE

Fig. 3.1 depicts a typical cross-silo FL system [19, 13, 14], where HE is implemented as

a pluggable module on the clients. The aggregator is the server which coordinates the

clients and aggregates their encrypted gradients. Note that in this work, we assume the

aggregator is honest-but-curious, a common threat model used in the existing FL litera-

ture [17, 64, 16]. The communications between all parties (the clients and the aggregator)

are secured by cryptographic protocols such as SSL/TLS, so that no third party can learn

the messages being transferred. Before the training starts, the aggregator randomly se-

lects a client as the leader who generates an HE key-pair and synchronizes it to all the

other clients. The leader also initializes the ML model and sends the model weights to all

the other clients. Upon receiving the HE key-pair and the initial weights, the clients start

training. In an iteration, each client computes the local gradient updates ( 1 ), encrypts

them with the public key ( 2 ), and transfers the results to the aggregator. The aggregator

waits until the updates from all the clients are received. It then adds them up and dis-

patches the results to all clients ( 3 ). A client then decrypts the aggregated gradients ( 4 )

and uses it to update the local model ( 5 ).

This architecture design follows the classic distributed SGD pattern. So, the existing

theories and optimizations including flexible synchronization [24, 67, 68] and local update

SGD [69, 70, 71] naturally apply. Moreover, as model updating is performed on the client’s

side using the plaintext gradient aggregation, we can adopt state-of-the-art adaptive op-

timizers such as Adam [72] for faster convergence—a huge advantage over the existing

proposal [18] that applies encrypted gradients directly on the encrypted global model in

the server.

3.2 Characterizing Performance Bottlenecks

In this section, we characterize the performance of cross-silo FL with three real applica-

tions driven by deep learning models in a geo-distributed setting. We show that encryp-
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tion and communication come as two prohibitive bottlenecks that impede the adoption of

FL among organizations. We survey possible solutions in the literature and discuss their

inefficiency. To our knowledge, we are the first to present a comprehensive characteriza-

tion for cross-silo FL in a realistic setting.

3.2.1 Characterization Results

Cross-silo FL is usually performed in multiple geo-distributed datacenters of participating

organizations [14, 13]. Our characterization is carried out in a similar scenario where nine

EC2 clients in five geo-distributed datacenters collaboratively training three ML models

of various sizes, including FMNIST, CIFAR, and LSTM (table 3.3). Unless otherwise spec-

ified, we configure synchronous training, where no client can proceed to the next iteration

until the (encrypted) updates from all clients have been aggregated. We defer the detailed

description of the cluster setup and the ML models to §3.5.1.

We base our study in FATE (Federated AI Technology Enabler) [73], a secure compute

framework developed by WeBank [28] to drive its FL applications with the other indus-

try partners. To our knowledge, FATE is the only open-source cross-silo FL framework

deployed in production environments. FATE has a built-in support to the Pailler cryp-

tosystem [66] (key size set to 2048 bits by default), arguably the most popular additively

HE scheme [29]. Our results also apply to the other partially HE cryptosystems.

Encryption and Communication Overhead We start our characterization by comparing

two FL scenarios, with and without HE. We find that the use of HE results in exceedingly

long training time with dramatically increased data transfer. More specifically, when HE is

enabled, we measured the average training iteration time 211.9s, 2725.7s, and 8777.7s for

FMNIST, CIFAR, and LSTM, respectively. Compared with directly transferring the plain-

text updates, the iteration time is extended by 96⇥, 135⇥, and 154⇥, respectively. In the

meantime, when HE is (not) in use, we measured 1.1GB (6.98MB), 13.1GB (85.89MB), and

44.1GB (275.93MB) data transfer between clients and aggregator in one iteration on aver-

age for FMNIST, CIFAR, and LSTM, respectively. To sum up, the use of HE increases both

the training time and the network footprint by two orders of magnitude. Such perfor-

mance overhead becomes even more significant for complex models with a large number
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Figure 3.2: Iteration time breakdowns of FMNIST, CIFAR, and LSTM for a client and the
aggregator.

of weights (e.g., LSTM).

Deep Dive. To understand the sources of the significant overhead caused by HE, we

examine the training process of the three models in detail, where we sample an iteration

and depict in fig. 3.2 the breakdown of the iteration time spent on different operations on

the client’s side (left) and on the aggregator’s side (right), respectively.

As illustrated in fig. 3.2a, on the client’s side, HE-related operations dominate the train-

ing time in all three applications. In particular, a client spent around 60% of the iteration

time on gradient encryption (yellow), 20% on decryption (dark purple), and another 20%

on data transfer and idle waiting for the gradient aggregation to be returned1 (light pur-

ple). In comparison, the time spent on the actual work for computing the gradients be-

comes negligible (< 0.5%).

When it comes to the aggregator (fig. 3.2b), most of the time (> 70%) is wasted on idle

waiting for a client to send in the encrypted gradients (orange). Collecting the gradients

from all clients (yellow) and dispatching the aggregated results to each party (dark purple)

also take a significant amount of time, as clients are geo-distributed and may not start

transferring (or receiving) at the same time. The actual computation time for gradient

aggregation (light purple) only accounts for less than 10% of the iteration span. Our deep-

dive profiling identifies encryption and decryption as the two dominant sources of the

1Due to the synchronization barrier, a client needs to wait for all the other clients to finish transferring
updates to the aggregator.
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Table 3.1: Benchmarking Paillier HE with various key sizes.

Key size Plaintext Ciphertext Encryption Decryption
1024 6.87MB 287.64MB 216.87s 68.63s
2048 6.87MB 527.17MB 1152.98s 357.17s
3072 6.87MB 754.62MB 3111.14s 993.80s

exceedingly long training time.

Why is HE So Expensive? In additively HE cryptosystems such as Paillier [66], encryp-

tion and decryption both involve multiple modular multiplications and exponentiation

operations with a large exponent and modulus (usually longer than 512 bits) [29], making

them extremely expensive to compute. Encryption also yields significantly larger cipher-

texts, which, in turn, causes a huge communication overhead for data transfer. In addi-

tively HE schemes such as Paillier, a ciphertext takes roughly the same number of bits as

the key size, irrespective of the plaintext size. As of 2019, the minimum secure key size

for Paillier is 2048 [74], whilst a gradient is typically a 32-bit floating point. This already

translates to 64⇥ size inflation after encryption.

We further benchmark the computation overhead and the inflated ciphertexts of Pail-

lier with varying key sizes. We use python-paillier [75] to encrypt and then decrypt

900K 32-bit floating points. Table 3.1 reports the results on a c5.4xlarge instance. As

the key size increases (higher security), both the computation overhead and the size of

ciphertexts grow linearly. Since Paillier can only encrypt integers, floating point values

must be scaled beforehand, and their exponents information contribute further to data

inflation.

Summary. The prohibitive computation and communication overhead caused by HE, if

not properly addressed, would lead to two serious economic consequences. First, given

the dominance of HE operations, accelerating model computation using high-end hard-

ware devices (e.g., GPUs and TPUs) is no longer relevant—a huge waste of the massive

infrastructure investments in clients’ datacenters. Second, the overwhelming network

traffics across geo-distributed datacenters incurs skyrocketing Internet data charges, mak-

ing cross-silo FL economically unviable. In fact, in WeBank, production FL applications

may choose to turn off HE if the security requirement is not so strict.
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3.2.2 Potential Solutions and Their Inefficiency

Hardware-Accelerated HE. HE process can be accelerated using software or hardware

solutions. However, typical HE cryptosystems including Paillier have limited interleav-

ing independent operations, thus the potential speedup of a single HE operation is quite

limited. In fact, it is reported that a specialized FPGA can only accelerate Paillier encryp-

tion by 3⇥ [29]. Moreover, simply accelerating the encryption itself does not help reduce

the communication overhead.

Reducing Communication Overhead. As accelerating HE itself does not clear the bar-

rier of adopting HE in FL, what if we reduce the amount of data to encrypt in the first

place? Since data inflation is mainly caused by the mismatch between the lengths of plain-

texts and ciphertexts, an intuitive idea would be batching as many gradients together as

possible to form a long plaintext, so that the amount of encryption operations will reduce

greatly. However, the challenge remains how to maintain HE’s additive property after

batching without modifying ML algorithms or hurting the learning accuracy.

While some prior works have explored the idea of joining multiple values together to

reduce HE overhead, they give no viable implementation of batch encryption for cross-

silo FL. [18] makes a false assumption that quantization is lossless, and uses adaptive

optimizer Adam in its simulation even though its design does not support that. With

only plain SGD available, [18] requires tedious learning rate scheduling tuning to achieve

similar results of advanced optimizers [76]. The naive batching given in [19] cannot be

correctly implemented as homomorphic additivity is not retained. In fact, none of these

works have systematically studied the impact of batching. Gazelle [77] and SEAL [78]

adopt the SIMD (single instruction multiple data) technique to speed up HE. However,

such approach only applies to lattice-based HE schemes [79] and is restricted by their

unique properties. For instance, it incurs dramatic computational complexity for lattice-

based HE schemes to support more levels of multiplication [77]. Besides, these works

only accelerate integer cryptographic operations. How to maintain the training accuracy

in cross-silo FL context remains an open problem.
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3.3 BatchCrypt

In this section, we describe our solution for gradient batching. We begin with the technical

challenges. We first show that gradient quantization is required to enable batching. We

then explain that generic quantization scheme lacks flexibility and efficiency to support

general ML algorithms, which calls for an appropriately designed encoding and batch-

ing scheme; to prevent model quality degradation, an efficient clipping method is also

needed. We name our solution BatchCrypt, a method that co-designs quantization, batch

encoding, and analytical quantization modeling to boost computation speed and commu-

nication efficiency while preserving model quality in cross-silo FL with HE.

3.3.1 Why is HE Batching for FL a Problem?

On the surface, it seems straightforward to implement gradient batching. In fact, batch-

ing has been used to speed up queries over integers in a Paillier-secured database [80].

However, this technique only applies to non-negative integers [80]. In order to support

floating numbers, the values have to be reordered and grouped by their exponents [80]. Such

constraints are the key to preserving HE’s additivity of batched ciphertexts—that is, the

sum of two batched ciphertexts, once decrypted, should match the results of element-

wise adding plaintext values in the two groups. Gazelle and SEAL [77, 78] employ SIMD

technique to meet this requirement, but the approach is limited to lattice-based cryptosys-

tems. We aspire to propose a universal batching method for all additively homomorphic

cryptosystems.

Why is Quantization Needed? Gradients are signed floating values and must be ordered

by their corresponding model weights, for which we cannot simply rearrange them by

exponents. The only practical approach is to use integer representations of gradients in

the batch, which requires quantization.

Existing Quantization Schemes. ML algorithms are resilient to update noise and able

to converge with gradients of limited precision [81]. Fig. 3.3a illustrates how generic gra-

dient quantization scheme can be used in HE batching. Notably, since there is no bit-wise
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mapping between a ciphertext and its plaintext, permutation within ciphertexts is not

allowed—only plain bit-by-bit addition between batched integers is available. Assume a

gradient g in [-1, 1] is quantized into an 8-bit unsigned integer. Let [·] denote the standard

rounding function. The quantized value of g is

Q(g) = [255 ⇤ (g-min)/(max-min)],

where max = 1 and min = -1. Suppose n quantized gradients are summed up. The

result, denoted by qn, is dequantized as

Q
-1(qn) = qn ⇤ (max-min)/255 +n ⇤min.

Referring to fig. 3.3a, gradients of a client (floating numbers in blue) are first quantized and

then batch joined into a large integer. To aggregate the gradients of two clients, we simply

sum up the two batched integers, locate the added gradients at the same bit positions as

in the two batches (8-bit integers in red), and dequantize them to obtain the aggregated

results.

Such a generic quantization scheme, though simple to implement, does not support

aggregation well and has many limitations when applied to batched gradient aggrega-

tion.

(1) It is restrictive. To dequantize the results, it must know how many values are aggre-

gated. This poses extra barriers to flexible synchronization, where the number of updates

is constantly changing, sometimes even unavailable.

(2) It overflows easily in aggregation. As values are quantized into positive integers,

aggregating them is bound to overflow quickly as the sum grows larger. To prevent over-

flow, batched ciphertexts have to be decrypted after a few additions and encrypted again

in prior work [18].

(3) It does not differentiate positive overflows from negative. Once overflow occurs, the

computation has to restart. Should we be able to tell them apart, a saturated value could

have been used instead of discarding the results.
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Figure 3.3: An illustration of a generic quantization scheme and BatchCrypt. The latter
preserves additivity during batching, with the sign bits highlighted within values.

3.3.2 HE Batching for Gradients

Unsatisfied with the generic quantization technique, we aspire to devise a batching so-

lution tailored to gradient aggregation. Our scheme should have the following desirable

properties: (1) it preserves the additivity of HE; (2) it is more resilient to overflows and

can distinguish positive overflows from negative ones; (3) it is generally applicable to ex-

isting ML algorithms and optimization techniques; (4) it is flexible enough that one can

dequantize values directly without additional information, such as the number of values

aggregated.

Gradient Quantization. Existing works use gradient compression techniques to reduce

network traffic in distributed training [82, 83, 84, 85]. These quantization methods are

mainly used to compress values for transmission [83] or accelerate inference where only

multiplication is needed [38]. However, they are not designed for gradient aggregation,

and we cannot perform computations over the compressed gradients efficiently, making

them inadequate for FL. We scrutinize the constraints posed by our design objectives, and

summarize the stemmed requirements for quantization as follows:

• Signed Integers: Gradients should be quantized into signed integers. In this way,

positive and negative values can cancel each other out in gradient aggregation, mak-

ing it less prone to overflowing than quantizing gradients into unsigned integers.

• Symmetric Range: To make values with opposite signs cancel each other out, the

quantized range must be symmetrical. Violating this requirement may lead to an

incorrect aggregation result. For example, if we map [-1, 1] to [-128, 127], then -1+

41



1 would become -128 + 127 = -1 after quantization.

• Uniform Quantization: Literature shows that non-uniform quantization schemes

have better compression rates as gradients have non-uniform distribution [84, 86].

However, we are unable to exploit the property as additions over quantized values

are required.

BatchCrypt We now propose an efficient quantization scheme BatchCrypt that meets

all the requirements above. Assume that we quantize a gradient in [-↵,↵] into an r-bit

integer. Instead of mapping the whole range all together, we uniformly map [-↵, 0] and

[0,↵] to [-(2r - 1), 0] and [0, 2r - 1], respectively. Note that the value 0 ends up with two

codes in our design. Prior work shows that 16-bit quantization (r = 16) is sufficient to

achieve near lossless gradient quantization [87]. We will show in §3.5 that such a moderate

quantization width is sufficient to enable efficient batching in FL setting.

With quantization figured out, the challenge remains how to encode the quantized

values so that signed additively arithmetic is correctly enabled—once the batched long

integer is encrypted, we cannot distinguish the sign bits from the value bits during aggre-

gation. Inspired by how modern CPUs handle signed integer computations, we use two’s

complement representation in our encoding. By doing so, the sign bits can engage in the

addition just like the value bits. We further use the two sign bits to differentiate between

the positive and negative overflows. We illustrate an example of BatchCrypt in fig. 3.3b.

By adding the two batched long integers, BatchCrypt gets the correct aggregation results

for -1 + (-126) and +1 + (-7), respectively.

BatchCrypt achieves our requirements by co-designing quantization and encoding: no

additional information is needed to dequantize the aggregated results besides the batch

itself; positive and negative values are able to offset each other; the signs of overflow can

be identified. Compared with the batching methods in [77, 78], BatchCrypt’s batching

scheme is generally applicable to all additively HE cryptosystems’ and fully HE cryp-

tosystems’ additive operations.
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Figure 3.4: A typical layer gradient distribution. ↵ is the clipping threshold.

3.3.3 dACIQ: Analytical Clipping for FL

Our previous discussion has assumed gradients in a bounded range (§3.3.2). In prac-

tice, however, gradients may go unbounded and need to be clipped before quantization.

Also, gradients from different layers have different distributions [83]. We thus need to

quantize layers individually [83, 84]. Moreover, prior works show that gradients from

the same layer have a bell-shaped distribution which is near Gaussian [86, 88, 89]. Such

property can be exploited for efficient gradient compression [83, 84]. Finally, gradients

require stochastic rounding during quantization [83, 87, 82], as it stochastically preserves

diminishing information compared to round-to-nearest.

Layer-wise quantization and stochastic rounding can be easily applied, yet it remains

unclear how to find the optimal clipping thresholds in the FL setting. As shown in fig. 3.4,

clipping is the process of saturating the outlaying gradients beyond a threshold ↵. If ↵ is

set too large, the quantization resolution becomes too low. On the other hand, if ↵ gets

too small, most of the range information from outlaying gradients has to be discarded.

In general, there are two ways to set the clipping threshold, profiling-based methods

and analytical modeling. Profiling-based clipping selects a sample dataset to obtain a sam-

ple gradient distribution. Thresholds are then assessed with metrics such as KL diver-

gence [90] and convergence rate [83]. However, such approach is impractical in FL for

three reasons. First, finding a representative dataset in FL can be difficult, as clients usu-

ally have non-i.i.d. data, plus it breaks the data silo. Second, the gradient range narrows

slowly as the training progresses [91], so clipping needs to be calibrated constantly, raising

serious overhead concerns. Third, the profiling results are specific to the training models

and datasets. Once the models or the datasets change, new profiling is needed. For both

practicality and cost considerations, BatchCrypt instead adopts analytical modeling.

As shown in fig. 3.4, the accumulated noise comes from two sources. Quantization
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noise refers to the error induced by rounding within the clipping range (the light blue

area), while clipping noise refers to the saturated range beyond the clipping threshold (the

gray area). To model the accumulated noise from both quantization and clipping, state-

of-the-art clipping technique ACIQ [38] assumes that they follow a Gaussian distribution.

However, ACIQ cannot be directly applied to BatchCrypt for two reasons. First, it em-

ploys a generic asymmetric quantization, which is not the case in BatchCrypt; second, in

FL, gradients are not available at one place in plaintext to conduct distribution fitting.

We address these problems by extending ACIQ clipping to the distributed FL setting,

which we call dACIQ. In particular, we adopt stochastic rounding with an r-bit quantiza-

tion width. Assume that gradients follow Gaussian distribution X ⇠ N(0,�2). Let qi be

the i-th quantization level. We compute the accumulated error in BatchCrypt as follows:

E[(X-Q(X))2] =

Z-↵

-1
f(x) · (x+↵)2

dx+

Z1

↵
f(x) · (x-↵)2

dx

+
2r-3X

i=0

Zqi+1

qi

f(x) · [ (x- qi)
2 · (qi+1 - x

4 ) + (x- qi+1)
2 · (x- qi

4 ) ]dx

⇡ ↵
2 + �

2

2
· [1 - erf(

↵p
2�

)]-
↵ · � · e-

↵2
2·�2

p
2⇡

+
2↵2 · (2r - 2)

3 · 23r ,

(3.1)

where the first and the second terms account for the clipping noise, and the third the

rounding noise. As long as we know �, we can then derive the optimal threshold ↵ from

Eq. (3.1). We omit the detailed derivations in the interest of space.

Gaussian Fitting. Now that we have Eq. (3.1), we still need to figure out how to fit gra-

dients into a Gaussian distribution in the FL setting. Traditionally, to fit Gaussian param-

eters µ and �, Maximum Likelihood Estimation and Bayesian Inference can be used. They

require information including the size of observation set, its sum, and its sum of squares.

As an ML model may have up to millions of parameters, calculating these components

as well as transferring them over Internet is prohibitively expensive. As a result, dACIQ

adopts a simple, yet effective Gaussian fitting method proposed in [92]. The method only

requires the size of observation set and its max and min, with the minimum computa-

tional and communication overhead. We later show that such light-weight fitting does

not affect model accuracy in §3.5.
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Algorithm 3 HE FL BatchCrypt
Aggregator:
1: function INITIALIZE
2: Issue INITIALIZELEADER() to the randomly selected leader
3: Issue INITIALIZEOTHER() to the other clients
4: function STARTSTRAINING
5: for epoch e = 0, 1, 2, ...,E do
6: Issue WORKERSTARTSEPOCH(e) to all clients
7: for all training batch t = 0, 1, 2, · · · , T do
8: Collect gradients range and size

9: Return clipping values ↵ calculated by dACIQ
10: Collect, sum up all g(e,t)

i into g
(e,t), and dispatch it

Client Worker: i = 1, 2, . . . ,m
– r: quantization bit width, bs: BatchCrypt batch size

1: function INITIALIZELEADER
2: Generate HE key-pair pub_key and pri_key

3: Initialize the model to train w

4: Send pub_key, pri_key, and w to other clients
5: function INITIALIZEOTHER
6: Receive HE key-pair pub_key and pri_key

7: Receive the initial model weights w
8: function WORKERSTARTSEPOCH(e)
9: for all training batch t = 0, 1, 2, · · · , T do

10: Compute gradients g(e,t)
i based on w

11: Send per-layer range and size of g(e,t)
i to aggregator

12: Receive the layer-wise clipping values ↵’s
13: Clip g

(e,t)
i with corresponding ↵, quantize g

(e,t)
i into r bits, with quantization range setting to

m↵ . Advance scaling
14: Batch g

(e,t)
i with bs layer by layer

15: Encrypt batched g
(e,t)
i with pri_key

16: Send encrypted g
(e,t)
i to aggregator

17: Collect g(e,t) from aggregator, and decrypt with pub_key

18: Apply decrypted g
(e,t) to w

Advance Scaling. With multiple clients in FL, it is essential to prevent overflows from

happening. Thanks to clipping, the gradient range is predetermined before encryption.

Let m be the number of clients. If m is available, we could employ advance scaling by set-

ting the quantization range to m times of the clipping range, so that the sum of gradients

from all clients will not overflow.

In this work, we assume that gradients follow Gaussian distribution. However, one

can extend this assumption to other distributions like Laplace by deriving a new Eq. (3.1)

as well as finding efficient fitting methods.
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Figure 3.5: The architecture of a client worker in BatchCrypt.

3.3.4 BatchCrypt: Putting It All Together

Putting it all together, we summarize the workflow of BatchCrypt in algorithm 3.

Initialization. The aggregator randomly selects one client as the leader. The leader client

generates the HE key-pair and initializes the model weights. The key-pair and model

weights are then synchronized with the other client workers.

Training. After initialization, there is no differentiation between the leader and the other

workers. Clients compute gradients and send the per-layer gradient range and size to the

aggregator. The aggregator estimates the Gaussian parameters first and then calculates

the layer-wise clipping thresholds as described in §3.3.3. Clients then quantize the gradi-

ents with range scaled by the number of clients, and encrypt the quantized values using

BatchCrypt. Note that advanced scaling utilizing the number of clients is used to com-

pletely avoid overflowing. However, algorithm 3 is still viable even without that informa-

tion, as BatchCrypt supports overflow detection. The encrypted gradients are gathered at

the aggregator and summed up before returning to the clients.

3.4 Implementation

We have implemented BatchCrypt atop FATE (v1.1) [73]. While we base our implementa-

tion on FATE, nothing precludes it from being extended to the other frameworks such as

TensorFlow Federated [93] and PySyft [94].
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Overview. Our implementation follows the paradigm described in algorithm 3, as most

of the efforts are made on the client side. Fig. 3.5 gives an overview of the client architec-

ture.

BatchCrypt consists of dACIQ, Quantizer, two’s Compliments Codec, and Batch Man-

ager. dACIQ is responsible for Gaussian fitting and clipping threshold calculation. Quan-

tizer takes the thresholds and scales them to quantize the clipped values into signed in-

tegers. Quantizer also performs dequantization. Two’s Compliments Codec translates

between a quantized value’s true form and two’s compliment form with two sign bits.

Given the large volume of data to encode, we adopt Numba to enable faster machine

codes and massive parallelism. Finally, Batch Manager oversees batching and unbatch-

ing gradients in their two’s compliment form, it remembers data’s original shape before

batching and restores it during unbatching. Batch Manager utilizes joblib to exploit

computing resources by multiprocessing. FATE is used as an infrastructure to conduct

FL, in which all the underlying ML computations are written with TensorFlow v1.14 opti-

mized for our machines shipped with AWS DLAMI [95]. FATE adopts the open-sourced

python-paillier as the Paillier HE implementation. We again employ joblib to par-

allel the operations here. FATE’s Communication Manager conducts the SSL/TLS secured

communication with gRPC. During our characterizations and evaluations, the CPUs are

always fully utilized during Paillier operations and BatchCrypt process.

Model Placement. In the typical parameter server architecture, model weights are placed

on the server side, while we purposely place weights on the worker side in BatchCrypt.

Prior work [18] employs the traditional setup: clients encrypt the initialized weights with

HE and send them to the aggregator first; the aggregator applies the received encrypted

gradients to the weights encrypted with the same HE key. Such placement has two major

drawbacks. First, keeping weights on the aggregator requires re-encryption. Since new

gradients are constantly applied to weights, the model must be sent back to the clients

to decrypt and re-encrypt to avoid overflows from time to time, resulting in a huge over-

head. Second, applying encrypted gradients prevents the use of sophisticated ML opti-

mizers. State-of-the-art ML models are usually trained with adaptive optimizers [72] that

scale the learning rates according to the gradient itself. By keeping the model weights
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on the client side, BatchCrypt can examine the aggregated plaintext gradients, enabling

the use of advanced optimizers like Adam, whereas on the aggregator side, one can only

adopt plain SGD.

3.5 Evaluation

In this section, we evaluate the performance of BatchCrypt with real ML models trained

in geo-distributed datacenters. We first examine the learning accuracy loss caused by

our quantization scheme (§3.5.2). We then evaluate the computation and communication

benefits BatchCrypt brings as well as how its performance compares to the ideal plain-

text learning (§3.5.3). We then assess how BatchCrypt’s speedup may change with vari-

ous batch sizes (§3.5.4). Finally, we demonstrate the significant cost savings achieved by

BatchCrypt (§3.5.5).

3.5.1 Methodology

Setting. We consider a geo-distributed FL scenario where nine clients collaboratively

train an ML model in five AWS EC2 datacenters located in Tokyo, Hong Kong, London,

N. Virginia, and Oregon, respectively. We launched two compute-optimized c5.4xlarge

instances (16 vCPUs and 32 GB memory) as two clients in each datacenter except that in

Oregon, where we ran only one client. Note that we opt to not use GPU instances because

computation is not a bottleneck. We ran one aggregator in the Oregon datacenter using

a memory-optimized r5.4xlarge instance (16 vCPUs and 128 GB memory) in view of

the large memory footprint incurred during aggregation. To better outline the network

heterogeneity caused by geo-locations, we profiled the network bandwidth between the

aggregator and the client instances. Our profiling results are summarized in table 3.2. We

adopt Pailler cryptosystem in our evaluation as it is widely adopted in FL [29], plus batch-

ing over it is not supported by Gazelle or SEAL [77, 78]. We expect our results also apply

to other cryptosystems as BatchCrypt offers a generic solution.

Benchmarking Models. As there is no standard benchmarking suites for cross-silo FL,

we implemented three representative ML applications in FATE v1.1. Our first application
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Table 3.2: Network bandwidth (Mbit/sec) between aggregator and clients in different
regions.

Region Ore. TYO. N.VA. LDN HK
Uplink (Mbps) 9841 116 165 97 81
Downlink (Mbps) 9841 122 151 84 84

Table 3.3: Summary of models used in characterizations.

FMNIST CIFAR LSTM
Network 3-layer FC AlexNet [97] LSTM [98]
Weights 101.77K 1.25M 4.02M
Dataset FMNIST [96] CIFAR10 [47] Shakespeare [99]

Task Image class. Image class. Text generation

is a 3-layer fully-connected neural network trained over FMNIST dataset [96], where we

set the training batch size to 128 and adopt Adam optimizer. In the second application,

we train AlexNet [97] using CIFAR10 dataset [47], with batch size 128 and RMSprop op-

timizer with 10-6 decay. The third application is an LSTM model [98] with Shakespeare

dataset [99], where we set the batch size to 64 and adopt Adam optimizer. Other LSTM

models that are easier to validate have significantly more weights. Training them to con-

vergence is beyond our cloud budget. As summarized in table 3.3, all three applications

are backed by deep learning models of various sizes and cover common learning tasks

such as image classification and text generation. For each application, we randomly par-

tition its training dataset across nine clients. We configure synchronous training unless

otherwise specified.

3.5.2 Impact of BatchCrypt’s Quantization

We first evaluate the impact of our quantization scheme, and see how quantization bit

width could affect the model quality. We report the test accuracy for FMNIST and CIFAR

workloads to see how BatchCrypt’s quantization affects the classification top-1 accuracy.

Training loss is used for LSTM as the dataset is unlabelled and has no test set. We sim-

ulated the training with nine clients using BatchCrypt’s quantization scheme including

dACIQ clipping. The simulation scripts are also open-sourced for public access. We set

the quantization bit width to 8, 16, and 32, respectively, and compare the results against

plain training (no encryption) as the baseline. We ran the experiments until convergence,
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Figure 3.6: The quality of trained model with different quantization bit widths in
BatchCrypt.

which is achieved when the accuracy or loss does not reach a new record for three consec-

utive epochs.

Fig. 3.6 depicts the results. For FMNIST, plain baseline reaches peak accuracy 88.62% at

the 40th epoch, while the 8-bit, 16-bit, and 32-bit quantized training reach 88.67%, 88.37%,

and 88.58% at the 122nd, 68th, and 32nd epoch, respectively. For CIFAR, plain baseline

reaches peak accuracy 73.97% at the 285th epoch, while the 8-bit, 16-bit, and 32-bit quan-

tized training reach 71.47%, 74.04%, and 73.91% at the 234th, 279th, and 280th epoch, re-

spectively. Finally, for LSTM, plain baseline reaches bottom loss 0.0357 at the 20th epoch,

while the 8-bit, 16-bit, and 32-bit quantized training reach 0.1359, 0.0335, and 0.0386 at the

29th, 23rd, and 22nd epoch, respectively. We hence conclude that, with appropriate quanti-

zation bit width, BatchCrypt’s quantization has negligible negative impact on the trained

model quality. Even in the case where the quantized version requires more epochs to con-

verge, we later show that such overhead can be more than compensated by the speedup

from BatchCrypt.

Although 8-bit quantization performs poorly for CIFAR and LSTM, it is worth notice

that, longer bit width does not necessarily lead to higher model quality. In fact, quantized

training sometimes achieves better results. Prior quantization work has observed similar

phenomenon [100], where the stochasticity introduced by quantization can work as a reg-

ularizer to reduce overfitting, similar to a dropout layer [101]. Just like the dropout rate,

quantization bit width acts as a trade-off knob for how much information is retained and
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Figure 3.7: Breakdown of training iteration time under stock FATE and BatchCrypt, where
“idle” measures the idle waiting time of a worker and “agg.” measures the gradient ag-
gregation time on the aggregator. Note that model computation is left out here as it con-
tributes little to the iteration time.

how much stochasticity is introduced.

In summary, with apt bit width, our gradient quantization scheme does not adversely

affect the trained model quality. In contrast, existing batching scheme introduces 5% of

quality drop [19]. Thus, quantization-induced error is not a concern for the adoption of

BatchCrypt.

3.5.3 Effectiveness of BatchCrypt

BatchCrypt vs. FATE. We next evaluate the effectiveness of BatchCrypt in real deploy-

ment. We set the quantization bit width to 16 as it achieves a good performance (§3.5.2).

The batch size is set to 100, in which we pad two zeros between the two adjacent values.

We report two metrics: the iteration time breakdown together with the network traffic.

We ran the experiments for 50 iterations, and present the averaged results against those

measured with the stock FATE implementation in fig. 3.7 and fig. 3.8. We see in fig. 3.2 that

BatchCrypt significantly speeds up a training iteration: 23.3⇥ for FMNIST, 70.8⇥ for CI-

FAR, and 92.8⇥ for LSTM. Iteration time breakdown further shows that our implementa-
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tion reduces the cost of HE related operations by close to 100⇥, while the communication

time is substantially reduced as well (“idle” in worker and “transfer” in aggregator).

We next refer to fig. 3.8, where we see that BatchCrypt reduces the network footprint by

up to 66⇥, 71⇥, and 101⇥ for FMNIST, CIFAR, and LSTM, respectively. Note that FATE

adopts grpc as the communication vehicle whose limit on payload forces segmenting

encrypted weights into small chunks before transmission. By reducing the size of data to

transfer, BatchCrypt alleviates the segmenting induced overhead (metadata, checksum,

etc.), so it is possible to observe a reduction greater than the batch size.

Our experiments also show that BatchCrypt achieves more salient improvements for

larger models. First, encryption related operations take up more time in larger models,

leaving more potential space for BatchCrypt. Second, since layers are batched separately,

larger layers have higher chances forming long batches. BatchCrypt’s speedup can be up

to two orders of magnitude, which easily offset the extra epochs needed for convergence

caused by quantization (§3.5.2).
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Figure 3.8: Comparison of the network traffic incurred in one training iteration using the
stock FATE implementation and BatchCrypt.

BatchCrypt vs. Plaintext Learning. We next compare BatchCrypt with the plain dis-

tributed learning where no encryption is involved—an ideal baseline that offers the opti-

mal performance. Fig. 3.9 depicts the iteration time and the network footprint under the

two implementations. While encryption remains the major bottleneck, BatchCrypt suc-

cessfully reduces the overhead by an order of magnitude, making it practical to achieve

the same training results as the plain distributed setting. Note that encrypted numbers in

FATE each carries redundant information such as public keys, thus causing the commu-

nication inflation compared with the plain version. Such inflation can be reduced if FATE
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Figure 3.9: Time and communication comparisons of one iteration on workers between
BatchCrypt and plain distributed learning without encryption.

Table 3.4: Projected total training time and network traffic usage until convergence for the
three models. The converged test accuracy for FMNIST, CIFAR as well as loss for LSTM
and their corresponding epoch numbers are listed in the table.

Model Mode Epochs Acc./Loss Time (h) Traffic (GB)

FMNIST
stock 40 88.62% 122.5 2228.3
batch 68 88.37% 8.9 58.7
plain 40 88.62% 3.2 11.17

CIFAR
stock 285 73.97% 9495.6 16422.0
batch 279 74.04% 131.3 227.8
plain 285 73.97% 34.2 11.39

LSTM
stock 20 0.0357 8484.4 15347.3
batch 23 0.0335 105.2 175.9
plain 20 0.0357 12.3 10.4

employs some optimized implementation.

Training to Convergence Our previous studies mainly focus on a single iteration. Com-

pared with stock FATE and plain distributed learning, BatchCrypt requires a different

number of iterations to converge. We hence evaluate their end-to-end performance by

training ML models till convergence. As this would take exceedingly long time and high

cost if performed in real deployment, we instead utilize our simulation in §3.5.2 and itera-

tion profiling results to project the total time and network traffic needed for convergence.

Table 3.4 lists our projection results of the three solutions. Compared with the stock

implementation in FATE, BatchCrypt dramatically reduces the training time towards con-

vergence by 13.76⇥, 72.32⇥, and 80.65⇥ for FMNIST, CIFAR, and LSTM, respectively. In

the meantime, the network footprints shrink by 37.96⇥, 72.01⇥, 87.23⇥, respectively. We

stress that these performance improvements are achieved without degrading the trained

model quality. On the other hand, BatchCrypt only slows down the overall training time
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Figure 3.10: Breakdown of iteration time and communication traffic of BatchCrypt with
LSTM model with various quantization bit widths in one iteration. The corresponding
batch sizes for bit width 8, 16, and 32 are 200, 100, and 50, respectively.

by 1.78⇥, 2.84⇥, and 7.55⇥ for the three models compared with plain learning—which re-

quires no encryption and hence achieves the fastest possible training convergence. In

summary, BatchCrypt significantly reduces both the computation and communication

overhead caused by HE, enabling efficient HE for cross-silo FL in production environ-

ments.

3.5.4 Batching Efficiency

We have shown in §3.5.2 that ML applications have different levels of sensitivity towards

gradient quantization. It is hence essential that BatchCrypt can efficiently batch quantized

values irrespective of the chosen quantization bit width. Given an HE key, the longest

plaintext it can encrypt is determined by the key size, so the shorter the quantization width

is, the larger the batch size is, and the higher the potential speedup could be. We therefore

look into how our BatchCrypt implementation can exploit such batching speedup.

We evaluate BatchCrypt by varying the batch size. In particular, we train the LSTM

model on the geo-distributed clients with different quantization widths 8, 16, and 32. The

corresponding batch sizes are set respectively to 200, 100, and 50. We ran the experiments

for 50 iterations, and illustrate the average statistics in fig. 3.10. Figs. 3.10a and 3.10b show

the time breakdown in the three experiments. It is clear that employing a shorter quanti-

zation bit width enables a larger batch size, thus leading to a shorter training time. Note
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Figure 3.11: Total cost until convergence between FATE’s stock implementation and
BatchCrypt, instance and network costs are highlighted separately.

that the speedup going from 8-bit to 16-bit is smaller compared with that from 16-bit to

32-bit, because HE operations become less of a bottleneck with larger batch size. Fig. 3.10c

depicts the accumulated network traffic incurred in one iteration, which follows a similar

trend as that of the iteration time. In conclusion, BatchCrypt can efficiently exploit batch-

ing thanks to its optimized quantization. Similar to [78, 77], BatchCrypt’s batching scheme

reduces both the computation and communication cost linearly as the batch size increases.

In fact, if lattice-based HE algorithms are adopted, one can replace BatchCrypt’s batching

scheme with that of [78, 77], and still benefit from BatchCrypt’s accuracy-preserving quan-

tization.

3.5.5 Cost Benefits

The reduced computation and communication overheads enable significant cost savings:

sustained high CPU usage leads to high power consumption, while ISPs charge for bulk

data transfer over the Internet. As our evaluations were conducted in EC2, which provides

a runtime environment similar to the organization’s own datacenters, we perform cost

analysis under the AWS pricing scheme. The hourly rate of our cluster is $8.758, while the

network is charged based on outbound traffic for $0.042, $0.050, $0.042, $0.048, $0.055 per

GB for the regions listed in table 3.2.

We calculate the total cost for training until convergence in table 3.4 and depict the

results in fig. 3.11. As both computation and communication are reduced substantially,

BatchCrypt achieves huge cost savings over FATE. While the instance cost reduction is the

same as the overall speedup in table 3.4, BatchCrypt lowers the network cost by 97.4%,

98.6% and 98.8% for FMNIST, CIFAR, and LSTM, respectively.
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3.6 Discussion

Local-update SGD & Model Averaging. Local-update SGD & model averaging is another

common approach to reducing the communication overhead for FL [30, 71], where the

aggregator collects and averages model weights before propagating them back to clients.

Since there are only addition operations involved, BatchCrypt can be easily adopted.

Split Model Inference In many FL scenarios with restrictive privacy requirement, a trained

model is split across clients, and model inference involves coordination of all those clients [13,

102]. BatchCrypt can be used to accelerate the encryption and transmission of the inter-

mediate inference results.

Flexible Synchronization There have been many efforts in amortizing the communica-

tion overhead in distributed SGD by removing the synchronization barriers [24, 67, 68].

Although we only evaluate BatchCrypt’s performance in synchronous SGD, our design

allows it to take advantage of the flexible synchronization schemes proposed in the litera-

ture. This is not possible with Secure Aggregation [17].

Potential on Large Models Recent research and our evaluations show that more sophis-

ticated ML models are more resilient to quantization noise. In fact, certain models are

able to converge even with 1- or 2-bit quantization [103, 83]. The phenomenon promises

remarkable improvement with BatchCrypt, which we will explore in our future work.

Applicability in Vertical FL Vertical FL requires complicated operations like multiplying

ciphertext matrices [13, 64]. Batching over such computation is beyond BatchCrypt’s cur-

rent capability of only supporting additive operations. We will leave it as a future work.

3.7 Summary

In this chapter, we have systematically studied utilizing HE to implement secure cross-silo

FL. We have shown that HE related operations create severe bottlenecks on computation

and communication. To address this problem, we have presented BatchCrypt, a system

solution that judiciously quantizes gradients, encodes a batch of them into long integers,

and performs batch encryption to dramatically reduce the encryption overhead and the

total volume of ciphertext. We have implemented BatchCrypt in FATE and evaluated its
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performance with popular machine learning models across geo-distributed datacenters.

Compared with the stock FATE, BatchCrypt accelerates the training convergence by up

to 81⇥ and reduces the overall traffic by 101⇥, saving up to 99% cost when deployed in

cloud environments.
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CHAPTER 4

PROTECTING DATA PRIVACY AND MODEL
CONFIDENTIALITY FOR COLLABORATIVE

LEARNING WITH SGX

After covering data privacy for data owners in FL, this chapter explores the scenarios

in distributed ML training where model owner is introduced, and has its own privacy

requirements.

4.1 Background and Related Work

4.1.1 Collaborative ML and Threat Model

In many application domains such as healthcare and finance, building a high-quality ML

model requires the participation of both model owner and data owners. The model owner

(e.g., a tech company or ML developer) has advanced ML expertise but may have no

access to diverse training datasets. On the other hand, the data owners (e.g., hospitals and

retailers) have quality labeled datasets, but any single one of them may not have enough

data samples or ML expertise to build a quality model. An ideal solution is to have data

owners collaborating with model owner in a way such that the model developed by the

latter can be trained over the data owned by the former, while still preserving data privacy

and model confidentiality.

4.1.2 Entities in Collaborative ML

Collaborative ML typically involves three entities, a model owner, many data owners, and

a third-party infrastructure such as a public cloud for providing training resources. These

entities have different goals in collaborative ML.
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Data Owner. As explained in §3.1, due to privacy concerns and government regulations,

each data owner wants to protect their data from being exposed to other entities, including

the model owner, the cloud, and other data owners.

Model Owner. For the model owner, protecting the confidentiality of the training model

(design and weights) is a top requirement. First, the model itself is a valuable intel-

lectual property as its development demands tremendous research and engineering ef-

forts [21, 22]. Protecting it helps maintain the model owner’s technological advances and

supports its business as data owners would otherwise train the model by themselves.

Second, maintaining the model confidentiality is also a security requirement. Prior work

shows that sharing the training model with (untrusted) participants poses new threats

that are hard to defend such as membership inference, model inversion, and backdoor

attack [104, 105, 106]. In security-critical applications such as fraud detection and spam

filtering, exposing the details of the used model leads to a wider attack surface as adver-

saries can forge attacks to evade the model-provided defense mechanism by offline trial

and error [107].

In addition to the confidentiality of the model itself, the model owner also wants to

conceal the ML training method such as optimizer selection and configuration [108], gradi-

ent manipulation [109] and learning rate schedule [110]. These methods are critical to the

training performance. Selecting, combining, and configuring them require extensive ML

expertise, which are part of the model owner’s intellectual property.

Third-Party Cloud. Training complex ML models over vast quantities of data requires

a large amount of computational resources, which the model owner and the data owners

may not have. Therefore, a common practice is to rent a large number of virtual instances

on a third-party cloud (e.g., Azure and AWS) and perform distributed training across

those instances.

4.1.3 Threat Model

We assume that the model owner and data owners are honest but curious. The data own-

ers might act on their own or collude with each other to steal the training model and the
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training method so that they can perform training on their own. Data owners also want

to pry on each other’s data to improve their competitiveness in the same business sector.

The model owner, on the other hand, wants to access the training data for illicit use. Par-

ticipants have no incentive to hinder the training and will follow the training protocols

honestly.

Training is performed on a third-party cloud trusted by neither the data owners nor the

model owner. The cloud instances, including privileged software like OS and hypervisor,

are not trusted. Attacks can be performed by the cloud provider or anyone with access

to the OS/hypervisor. However, data and model owners have to trust the implementa-

tion of Trusted Computing Base (TCB) (e.g., Intel SGX) and its attestation service. We also

assume that the participants trust standard ML frameworks like TensorFlow [9] and Py-

Torch [111]. These frameworks are developed by reputable organizations and are under

public scrutiny in open-source communities.

We do not address side-channel attacks [112] and denial-of-service attacks as they can

be prevented [113, 114] and are out of the scope of the paper. We also leave out rollback

attacks [115] on the data stored beyond enclaves, as they can be handled by existing ap-

proaches [116, 117]. Finally, we do not consider the model owner colluding with some

data owners to steal others’ data, as victim data owners can effectively guard against this

attack with differential privacy [34].

4.2 Prior Arts and Their Insufficiency

In this section, we discuss why prior arts are insufficient to protect data privacy and model

confidentiality for collaborative learning under the threat model introduced in §4.1.3. We

start by introducing existing solutions designed for different collaborative learning scenar-

ios and explaining why they cannot be adapted here. We then introduce the SGX-based

solutions, which are the most related to our work, and discuss their problems for scalable

collaborative learning.
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4.2.1 Existing Solutions for Different Collaborative Learning Scenarios

Collaborative ML has been studied in the literature, including federated learning and split

learning. However, existing solutions focus on quite different use scenarios, where only

data privacy is considered but not model confidentiality.

Federated learning (FL) Like we have presented in §3.1, FL focuses primarily on data

privacy, and is not meant to protect model confidentiality. Models have to be shared

to all data owners in the clear, so that data owners can produce updates based on local

data. Such practice is not sufficient for the model confidentiality requirement of our threat

model, and cannot be intuitively extended to support it.

Split Learning (SL) offers an alternative approach to collaborative ML for training deep

neural networks [32, 31]. In SL, a neural network is split into two parts from a certain

layer, called a cut layer. The model owner releases the network up to the cut layer to

data owners, while keeping the rest of the layers private to itself. The data owners train

the network up to the cut layer with their private data and send the updates to a central

server, based on which the model owner trains the remaining network. While this scheme

preserves data privacy, the model confidentiality cannot be fully protected, as the network

up to the cut layer still needs to be shared among data owners. Also, the parameters of

that network are accessible to data owners only, meaning that the model owner has no

access to the complete network of the trained model.

Given that these collaborative learning scenarios assume that the actual training task is

distributed among data owners, they have fundamentally different system architectures

than the scenario we focus on and thus these existing solutions are difficult to be adapted

here.

4.2.2 Intel SGX

ML training requires access to both data and model. To protect their confidentiality, the

training must be performed in a secure place trusted by both data and model owners. The

trusted hardware offers a viable solution, which applications can use to create a trusted

execution environment (TEE) even if the underlying platform is untrusted.
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Intel SGX (Software Guarded Extensions [33]) is the most widely available hardware-

assisted TEE compared with other implementations such as ARM TrustZone [118] and

AMD Secure Memory Encryption (SME) [119]. It sets aside a protected memory region,

called an enclave, within an application’s address space. Code execution and memory

access in an enclave are strongly isolated from external programs. The processor ensures

that only code running in an enclave can access data loaded into it. External programs,

including operating system (OS) and hypervisor, can invoke code inside an enclave only

at statically-defined entry points. SGX also supports remote attestation, which allows a

remote user to verify that the initial code and data loaded into an enclave match a given

cryptographic hash, hence ensuring the enclave to perform the expected computation.

However, the enclave’s hardware-protected confidentiality and integrity come with

a steep price of performance. First, as the host platform is untrusted, copying between

CPU and enclave memory must be protected to prevent memory bus snooping. SGX

uses Memory Encryption Engine (MEE) to transparently encrypt and decrypt data ex-

changes through memory bus, incurring 2X-3X performance overhead than native execu-

tion [120]. Second, the performance of an enclave is usually bounded by the EPC (enclave

page cache) size, a hardware-protected memory region used to host the enclave pages.

The EPC size is usually small, e.g., only 168 MB in the most expensive Azure confiden-

tial computing instance [121]. Any memory usage beyond the EPC size will cause enclave

pages to evict to the unprotected main memory. To ensure the confidentiality and integrity

of the evicted EPC pages, SGX uses symmetric key cryptography which, unfortunately,

compounds to a large overhead as the number of evictions increases. Such overhead can

be mitigated by optimizing code to avoid paging as much as possible. Third, because

system calls still need to be facilitated outside of enclaves, there is a substantial context

switching overhead. State-of-the-art SGX systems tend to avoid system calls like IO and

threading [39].
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Figure 4.1: An illustration of a single-enclave solution that protects the confidentiality of
both data and training model.

4.2.3 Private ML with a Single SGX Enclave

A simple solution for private collaborative ML is to use a single SGX enclave attested by

both data owners and model owner. Fig. 4.1 illustrates such design.1 The model owner

and data owners hold their secrets – model and data – locally, while the training is per-

formed in a remote enclave running on an untrusted host (e.g., a cloud server). Before the

training begins, a data (or model) owner generates a private symmetric key and uses it to

encrypt the data (or model). The encrypted data and model are then uploaded to an un-

protected storage on the host. Note that, this is secure as the untrusted host has no access

to the keys to decrypt the content. The host then creates an enclave containing the agreed-

upon ML code by all secret (i.e., model and data) owners, and lets them initiate attestation

to ensure the integrity and correctness of the initialized enclave. Once the attestation is

passed successfully, each secret owner uploads its encryption key to the enclave over a

TLS-protected channel, with which the enclave can retrieve the encrypted data and model

from the storage and decrypt them. The training starts once the data, model, and ML code

are all loaded into the enclave. When the training completes, the model owner downloads

the trained model, and the enclave is destroyed along with the data it contains.

Poor Scalability. Such design, however, does not scale to a large training dataset. To

illustrate this problem, we characterize its performance with Azure’s latest confidential

computing offering DCsv2 [121]. We run experiments in a Standard_DC8_v2 instance,

the largest in DCsv2 with 8 vCPUs and 32 GB memory, of which 168 MB is dedicated

1This design is an extension to [34], in which data owners also own the training model, similar to the FL
setting.
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Figure 4.2: The time needed to finish one epoch training running under SGX and native
mode respectively. The slowdown shown in line represents the ratio between SGX time
and native time. The memory figure depicts the amount of memory is used actively in
SGX.

to an enclave’s EPC. We train AlexNet [122] over images of size 32 ⇥ 32 ⇥ 3 with Ten-

sorSCONE [123], an SGX-optimized version of TensorFlow v1.15. We then run the same

training workload with the unmodified TensorFlow outside of the enclave. Note that, to

speed up model training in a single machine without accelerators, a common technique is

to configure a large batch size for increased parallelism and reduced iterations. We there-

fore evaluate the training epoch time (time needed to finish passing the entire dataset)

with varying batch sizes in SGX and the native environment, respectively.

Fig 4.2a depicts the experimental results. When the batch size is small (8 or 16), running

in SGX is only 2.9X slower than the native speed running outside of the enclave, meeting

the expected performance of TensorSCONE [123]. Such slowdown is mainly due to the

MEE encryption overhead but not EPC paging, as memory usage is barely over the EPC

size (fig. 4.2b). Further enlarging the batch size leads to increased parallelism, which in

turn reduces the epoch time in the native mode. This trend does not stand in SGX mode:

as batch size increases, the epoch time first reduces but then surges rapidly, a consequence

of frequent EPC paging due to excessive memory usage beyond the EPC size (fig. 4.2b).

Therefore, one cannot expect to scale ML training by configuring a large batch size in an

enclave. In fact, this can be 17X slower than running in the native mode (fig. 4.2a, batch

size 256).
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Exposing Training Logic. Note that in the single-enclave solution, the ML code must be

shared and agreed by all data owners to ensure that it contains no malicious code that

could harm their data (e.g., writing data to an external storage). However, this inevitably

reveals the details of the model update logic, such as optimizer selection, learning rate

scheduling, and gradient manipulation, which the model owner may not want to share as

these are part of its intellectual property (§4.1.1).

4.2.4 Private ML with Multiple SGX Enclaves

As model training in a single enclave does not scale, recent work turns to a distributed so-

lution with multiple enclaves. Notably, [35] augments FL with SGX enclaves hosted at the

data owners’ side for enhanced data privacy while taking advantage of data parallelism,

but the data owners can still access the training model. Chiron [36], built atop Ryoan [120],

ensures model confidentiality for ML-as-a-Service providers with SGX enclaves, and sup-

ports running multiple training enclaves in parallel. However, the design assumes that

model owner (i.e., MLaaS provider) is not interested in harvesting data owners’ data,

which may not be the case in collaborative ML. SecureTF [37] presents a modified version

of TensorFlow to support distributed training in multiple enclaves. However, it assumes

that model and data belong to the same entity, and hence cannot be applied to collabora-

tive ML. To our knowledge, a scalable solution for collaborative ML that can protect the

privacy for both model and data owners is still missing.

4.3 Citadel Design

We aspire to devise a ML system that not only preserves data and model privacy simul-

taneously, but also enables distributed training across multiple SGX enclaves. To do so,

we securely partition training workload, and make part of it replicable. Citadel achieves

so by isolating data handling codes and model handling ML codes. The former can be shared

with data owners to gain their trust, while the latter remains private to the model owner.

After that, a barrier has to be inserted between the two parts to ensure the model handling

codes cannot recover data owner’s data with its private codes. With data handling codes

isolated securely, Citadel can accelerate training through data parallelism.
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Figure 4.3: An architecture overview of Citadel. All codes (except the model update code)
are open-sourced.

4.3.1 Design Overview

Fig. 4.3 illustrates an architecture overview of our system. Citadel facilitates collabora-

tive ML in multiple enclaves hosted on untrusted infrastructure. These enclaves can run in

a single or multiple cloud instances. A data (model) owner communicates with Citadel

through a client running on a local machine. The client includes a verifier which the owner

uses to attest Citadel. It also provides a key manager with which the owner generates a

symmetric encryption key and uses it to encrypt data (model). The client uploads the en-

crypted data (model) to a general storage service in the cloud host. The storage itself does

not need to be trusted since the secrets are encryption-protected. Citadel launches multi-

ple enclaves on behalf of data and model owners, establishes trust between the enclaves

and the secret owners via attestation (handled by CAS), and performs distributed training

in those enclaves. Citadel runs three types of enclaves: training enclaves, aggregator enclave,

and admin enclave.

Training Enclave. In Citadel, each data owner has a dedicated training enclave. Each

training enclave needs to be attested by both the corresponding data owner(s) and the

model owner to gain their trust. It takes private data as input and runs data handling

codes (e.g., computing gradient updates), provided by the model owner, to generate

model updates. As the code has direct access to the training data, it must be shared to and

agreed by the data owner. The code should reveal no model information that the model

owner wants to protect, such as hyper-parameter configurations and the training model.

Instead, it loads such information as environment variables and non-executable binary model

files from the storage service. Note that it is not possible to inject malicious code into the
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model files, as they are non-executable in the standard ML toolchains. After the model

updates are computed, the training enclave sends them to the aggregator enclave for a

global aggregation. Citadel currently does not consider the scenario where models are

too big for a single enclave. Such an issue could be addressed by either increasing EPC

size with specialized SGX card [124], or applying existing model parallelism techniques

to split large models [125, 126].

Aggregator Enclave. Citadel launches an aggregator enclave on behalf of the model

owner to run the model handling code. Each training job has only one such enclave. It

collects and aggregates updates from all training enclaves and utilizes them to update the

training model. The updated model is encrypted and stored in storage service, so that the

training enclaves can start the next training iteration by retrieving it. As the aggregator

enclave has no access to data from data owners, the code running inside remains private

to the model owner. This protects important training techniques developed by the model

owner from being revealed such as learning rate schedule, optimizer selection, gradient

selection and manipulation, which are all required in the update aggregation stage. The

aggregator enclave is attested by the model owner only.

Admin Enclave. Citadel launches an admin enclave for a training job and uses it to

schedule training workload and orchestrate the involved training and aggregator en-

claves. Codes running inside an admin enclave (i.e., mask generator introduced in §4.3.2

and enclave scheduler) are open-sourced for public access. The enclave itself is attested by

all model and data owners. To facilitate communication between an enclave and external

entities, Citadel provides open-source utilities that run as admin code in a training or aggre-

gator enclave. As the cloud host’s network is untrusted, communications inside Citadel

are secured by TLS connections with endpoints located inside the enclaves.

Attestation with CAS. In Citadel, a secret owner needs to attest multiple enclaves to

ensure the integrity and confidentiality of the data and code. Using the default SGX attes-

tation can be tedious as it is designed to attest one enclave at a time. CAS (configuration

and attestation service) offers a simplified solution for secret management and attestation.
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CAS itself is open-sourced and runs in an enclave, which the model and data owners can

verify and attest. Once the secret owners have established trust over CAS, they can del-

egate their encryption keys to it, and instruct it on how to maintain their security. That

is, which enclave can access what secrets, and what codes should run in which enclave.

CAS honestly follows the specified security policy, attesting each enclave on behalf of the

requested data or model owners and supplying it with secrets once it is trusted. With

the help of CAS, model and data owners only have to initiate the attestation process once.

Citadel employs PALÆMON [127], a trust management service built on top of SCONE [39],

as its CAS system.

Fault Tolerance. Citadel’s training enclaves are stateless by design, because model and

data are all stored into and fetched from a storage system. In case of training enclave fail-

ures, Citadel can easily launch replacements and resume the training process via restart-

ing the ongoing iteration. The training progress is always checkpointed since the updated

model is stored into storage after each iteration. If admin or aggregator enclaves fail, we

can also similarly restart the cluster and continue training.

4.3.2 Separating Data and Model Handling

A key design adopted by Citadel is to separate the model owner’s ML code into two

parts: model update code and data handling code. The model update code computes the

global model updates based on the gradients received from the training enclaves. As such,

it concerns with potentially confidential methods and values. Citadel runs the model

update code in the aggregator enclave and ensures its confidentiality. In contrast, the

data handling code is shared with the data owners (i.e., open-sourced) to gain their trust.

It deals with standard forward and backward propagation and has direct access to the

private data.

This separation provides the model owners with model confidentiality: Citadel en-

sures that the data owners only see placeholders for the model and hyperparameters, which

are loaded dynamically into training enclaves after attestation (see the description of

Training Enclave in §4.3.1). The secrets to load these values and replace the placehold-

ers are only shared after the attestation, such that model and hyperparameters remain
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unknown to data owners.

On the other hand, this separation alone does not fully provide data privacy for data

owners. Although the data owners can verify the open-source data handling code and en-

sure it does not leak data purposely, prior work shows that a data owner’s training data

can still be inferred accurately from its computed gradients [18]. Citadel addresses this

problem to protect data privacy from two aspects: First, data owners do not receive inter-

mediate models from the model owner, such that they cannot pry into other data owners’

data. Second, it establishes a barrier between the training enclaves and the aggregator en-

clave, so that the model owner only receives aggregated updates but not the raw updates

from any individual training enclave. We propose two viable alternatives for such barrier:

zero-sum masking and hierarchical aggregation.

Zero-Sum Masking. Zero-sum masking, originally proposed for federated learning (FL)

as a way to implement Secure Aggregation [17], allows data owners to collectively gener-

ate masks and apply them to their individual updates before uploading them to the aggre-

gator. The masks are generated in a way such that they are canceled out when summed

up so that the aggregated updates are correctly recovered. Since the aggregator does not

have access to individual masks, it cannot learn the raw gradients from any data owner.

Inspired by such solution, we propose a simpler zero-sum masking scheme for Citadel.

Compared with the FL setting, where the masks have to be generated among distributed

data owners, TEE enables us to execute codes that are verified and trusted by the con-

cerning parties, so we can opt to a centralized mask generation approach. As shown in

algorithm 4, N masks m0,m1, ...,mN-1 are generated for N training enclaves by the ad-

min enclave trusted by all secret owners. These masks have the same shape as the model

gradients, while adding up to zero:
P

N-1
i=0 mi = 0. The security of such approach is based

on the fact that if data owners’ values have uniformly random pairwise masks added to

them, then the resulting values look uniformly random, conditioned on their sum being

equal to the sum of data owner’s values (see the security proof in [17]).

After the training starts, each training enclave first downloads and decrypts a fresh

model from the storage service, and then computes gradients with the codes shared and

verified by data owners. The training enclave i then requests admin enclave for a mask
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mi, applies it to its gradients, and finally sends them to the aggregator enclave. The aggre-

gator enclave collects the masked gradients from all training enclaves, accumulates them

and updates the model with them using a certain model update method. As individual

update from each training enclave is obscured with a random mask, the model owner’s

private codes cannot infer any information about the training data from it. By accumu-

lating all the updates together, the inlined masks cancel each other out, resulting in the

same aggregated update as it would have been without masking. Our centralized zero-

sum masking approach protects the model confidentiality, while guaranteeing the same

level of privacy for data owners as Secure Aggregation [17] without the time-consuming

synchronous distributed mask generation protocols.

Hierarchical Aggregation. The zero-sum masking solution requires one-to-all and all-to-

one synchronizations in the mask distribution (between the admin enclave and training

enclaves) and update aggregation (between training enclaves and the aggregator enclave)

phases. As more training enclaves run in the system, such synchronization overheads

become increasingly prominent. In fact, given SGX’s memory limitations, neither gener-

ating and holding a large amount of masks within an admin enclave nor aggregating large

updates within an aggregator enclave scales.

To avoid such all-to-one synchronization, we propose to establish a tree-structured hi-

erarchical aggregation among training enclaves. Since our goal is to protect individual up-

dates from being learned by the aggregator enclave, we can utilize training enclaves to

aggregate the intermediate results, which are trusted by data owners. As described in

algorithm 5, after processing a batch, each training enclave holds its own gradients and

follows a tree-structured hierarchical aggregation scheme to accumulate gradients. As-

sume there are N training enclaves, and each leader in the aggregation tree has C children

(C - 1 neighbors have to transfer their updates to the leader in one round). It requires

dlogCNe+ 1 rounds of aggregation (height of the aggregation tree), and on the l
th level,

there are d...ddN/Ce/Ce...e active nodes remaining. On the l
th level, we denote the i

th re-

maining active node by id
l

i
, so that each of these active nodes has to send its aggregated

results from last round to a leader node id
l

bN/Cc. The recursion continues until the last

leader accumulates the final results and sends it to the aggregator enclave. Hierarchical
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Algorithm 4 Citadel with Zero-Sum Masking
Training Enclave i:
1: function STARTSTRAINING
2: for epoch e = 0, 1, 2, ...,E do
3: for all training batch t = 0, 1, 2, · · · , T do
4: Download and decrypt fresh model model

5: Compute gradients g(e,t)
i

6: Request mask m
(e,t)
i GETMASK(i) from admin enclave

7: Apply mask to gradients G(e,t)
i = g

(e,t)
i +m

(e,t)
i

8: Send update G
(e,t)
i to aggregator enclave by calling UPLOADUPDATE(G(e,t)

i )

Admin Enclave:
1: function GENERATEMASK(N)
2: Initialize sum sum = 0
3: Initialize masks = []
4: for i = 0, 1, 2, ...,N- 2 do
5: Generate random mask new_mask

6: Append new_mask to masks

7: sum+ = new_mask

8: Append -sum to masks

9: function GETMASK(i)
10: if i == N- 1 then
11: Call GENERATEMASK(N) asynchronously for next iteration.
12: return masks[i]

Aggregator Enclave:

1: function UPLOADUPDATE(G(e,t)
i )

2: Record updates[i] = G
(e,t)
i

3: function STARTSTRAINING
4: Download and decrypt fresh model model

5: for epoch e = 0, 1, 2, ...,E do
6: for all training batch t = 0, 1, 2, · · · , T do
7: Wait for updates from all trianing enclaves
8: Summarize all updates G(e,t) = SUM(updates)
9: Apply aggregated gradients G(e,t) to model model

10: Upload model to storage service

aggregation avoids the expensive all-to-one synchronization, eliminating communication

hotspots.

Comparison of Two Approaches. Both zero-sum masking and hierarchical aggregation

effectively shield the raw updates of individual training enclaves from the aggregator en-

clave. Zero-sum masking requires an all-to-one communication from all training enclaves,

and then all the updates have to be aggregated in the EPC-limited aggregator enclave, so

the overall overhead grows as more training enclaves run in the system.
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Algorithm 5 Citadel with Hierarchical Aggregation
Training Enclave i:
1: function STARTSTRAINING
2: for epoch e = 0, 1, 2, ...,E do
3: for all training batch t = 0, 1, 2, · · · , T do
4: Download fresh model model

5: Compute gradients g(e,t)
i

6: Start hierarchical aggregation calling RECURSIVEAGGREGATE

7: function RECURSIVEAGGREGATE
8: if I am leader in this round. then
9: Collect and accumulate intermediate results.

10: if I am the final leader. then
11: Send aggregated result G(e,t) to aggregator.
12: else
13: Send the intermediate results to the next leader by calling its RECURSIVEAGGREGATE.
14: else
15: Send the intermediate results to the next leader by calling its RECURSIVEAGGREGATE.

Aggregator Enclave:
1: function STARTSTRAINING
2: Download and decrypt fresh model model

3: for epoch e = 0, 1, 2, ...,E do
4: for all training batch t = 0, 1, 2, · · · , T do
5: Wait for final update G

(e,t) from the last leading training enclave
6: Apply aggregated gradients G(e,t) to model model

7: Upload model to storage service

Hierarchical aggregation, on the other hand, breaks the all-to-one communication pat-

tern into a hierarchical aggregation tree. Although the potential network congestion is

mitigated, extra cryptographic operations are needed to protect the communication con-

nections on the aggregation tree. However, it is difficult, if not impossible, to quantita-

tively justify such trade-off in this scenario, as the time needed to finish a certain operation

within an enclave depends on both the memory footprint and the memory access pattern.

Assume there are N training enclaves. Let tnet(x), tenc(x), and tdec(x) respectively denote

the time needed to transfer, encrypt, and decrypt message x. Let tmask, ttrain, and tapply

be the computation time needed to apply a mask, generate gradients, and apply gradients

to model, respectively, and tagg(k) the time spent on aggregating updates from k training

enclaves. The iteration time for zero-sum masking tmask(N) is estimated as

tmask(N) = ttrain + tnet(m) + tdec(m) + tmask + tenc(g)

+tnet(g) + tdec(g) + tagg(N) + tapply,

where m and g stand for a set of mask and gradients, respectively. Assuming each node
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in the aggregation tree has C children, the iteration time for hierarchical aggregation

ttree(N,C) is estimated as

ttree(N,C) = (tenc(g) + tdec(g) + tagg(C) + tnet(g))⇥ (dlogCNe+ 1)

+ttrain + tapply.

As a general guideline, zero-sum masking tends to work better on smaller models with

fewer training enclaves, as the memory footprint within the aggregator is smaller and net-

work congestion is less likely. When there is a large number of training enclaves, hier-

archical aggregation becomes more favorable. We will evaluate the two approaches in

§4.5.

4.4 Implementation

In this section, we describe the implementation details of Citadel. We base our imple-

mentation on SCONE [39], but it can also be extended to other SGX-enabling frameworks

such as Graphene [128] and Ryoan [120]. We use MongoDB [129] as the storage service,

which can be replaced by any generic object store or cloud storage system. We container-

ize all system components and orchestrate them in Kubernetes [130]. Our implementation

consists of 5,000 lines of Python code and Linux Shell script, and is open-sourced.

Trusted Computing Base (TCB). For an easy support of SGX and multiple enclave or-

chestration, we adopt SCONE [39] in our system. SCONE provides SGX-protected Linux

containers, so that we can utilize tools like Docker [131] and Kubernetes [130] to orches-

trate enclaves.

Efficient Encryption & Decryption. As the host infrastructure is not trusted, encrypted

data and models must be decrypted within the enclaves, and network connections be-

tween enclaves are also secured with TLS. This results in substantial cryptographic oper-

ations performed inside an enclave. Especially during the aggregation process, a single

enclave has to decrypt results from multiple enclaves and add them up. Therefore, the ef-

ficiency of cryptographic inside an enclave plays an important role in overall performance

of Citadel.
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In a native setting without SGX, one way to increase performance is to increase the

parallelism with multi-processing or multi-threading. However, inside an SGX enclave,

each process runs inside its own enclave, so launching new processes is extremely slow

as it requires to set up new enclaves and initializes EPC pages. Furthermore, the new

sub-process enclaves contend with the parent enclave for EPC, resulting in performance

degradation for all of them. Our experimental evaluations with the OpenSSL implemen-

tation of AES-256-CBC shows that, encrypting and decrypting 16 AlexNet [97] models

with multi-processing enabled is at least 2X slower than processing them serially with

SGX enabled. On the other hand, SCONE [39] provides efficient user-level threading to

avoid costly system calls, so it is possible for us to improve cryptographic operations

with multi-threading. However, due to Python’s Global Interpreter Lock (GIL) [132], only

one python thread can run at any given time even with multi-threading. To overcome

such hurdle, we implement our cryptographic operations in C++ and compile it with

CFFI [133]. This not only allows us to bypass the GIL limitation, but also enables the

highly efficient performance of native codes.

Offline Mask Generation. In our zero-sum masking approach, protecting the mask con-

fidentiality is the key to shielding individual updates from model owner and cloud provider.

Therefore, the masks have to be generated within the admin enclave and encrypted be-

fore leaving it. However, when the number of training enclaves increases, the compute-

intensive nature of mask generation and distribution would inevitably make admin en-

clave a performance bottleneck.

To address this problem, we choose to generate masks offline and offload mask distribution

to the untrusted storage service. Before the training starts, the admin enclave generates suf-

ficient sets of N masks and stores them in the storage service encrypted. During training,

upon receiving a masking request from a training enclave, the admin enclave redirects

the request to the storage service, and provides the training enclave with a correspond-

ing decryption key. This design removes the heavy-lifting tasks off the critical path. In

case of training enclave stragglers, Citadel may choose to employ relaxed consistency like

SSP [24]: assuming the first k out of N training enclaves would participate in the aggre-

gation, admin enclave can return the sum of remaining pre-generated masks
P

N-1
i=k

mi to
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Figure 4.4: The workflow of Citadel with zero-sum masking, enclave TLS connections
terminate within enclaves.

enclave k- 1 as its mask, ensuring the overall sum remains zero.

Citadel Workflow. Putting it all together, we elaborate on the workflow of Citadel with

the two aggregation approaches to protect model and data privacy simultaneously. The

workflow of zero-sum masking is depicted in fig. 4.4a. 1 The model and data owners

attest the CAS, and share their encryption keys to CAS. 2 The model and data owners

upload their encrypted secrets to the storage service. 3 CAS attests training and admin

enclaves on behalf of data owners, then shares the corresponding data encryption keys to

training enclaves; CAS also attests training, admin, and aggregator enclaves on behalf of

model owner, then shares the model encryption key to training and aggregator enclaves.

4 Training enclaves fetch corresponding data and model, decrypt them and compute gra-

dients based on their own data; aggregator downloads and decrypts model. 5 Training

enclaves ask admin enclave for masks and have the requests redirected to the storage ser-

vice with mask decryption keys. 6 Training enclaves fetch masks from storage service,

apply them to their updates, and send them over to aggregator. 7 Aggregator collects

the masked updates, summarizes them, and updates the global model. The model is then

encrypted and uploaded to the storage service. This completes one training iteration.

Similarly, fig. 4.4b depicts the workflow of hierarchical aggregation, where Steps 1 -

4 are the same as the masking approach. 5 Training enclaves recursively aggregate all

the updates until the final sum of all updates is available at training enclave 0. 6 The
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aggregator enclave receives the final update and applies it to the model. 7 The model

is then encrypted and uploaded to the storage service, completing the current training

iteration.

4.5 Evaluation

In this section, we evaluate the performance of Citadel with representative ML models

trained on a public cloud. We first examine the scalability of Citadel with zero-sum mask-

ing in clusters of various sizes. We then evaluate hierarchical aggregation with different

configurations to quantify how avoiding all-to-one communication can help improve sys-

tem scalability. Finally, we assess the system overhead of our design by comparing Citadel

with two baselines, i.e., the single-enclave baseline and native Citadel without SGX base-

line.

4.5.1 Methodology

Settings. We consider a distributed ML setting where all instances are located within the

same cluster. There is no need to perform geo-distributed training for privacy preserva-

tion, because all secrets uploaded to Citadel are encrypted and protected by Citadel. We

conduct all experiments on Azure confidential computing instances with SGX support in

Canada Central region. The instance type we chose is Standard_DC4s_v2, which

has 4 vCPUs, 16 GB of memory, and 112 MB of EPC memory. We deploy exactly one en-

clave on each instance to avoid EPC contention. The scale of our evaluation is limited to

34 such instances (including all training, aggregator and admin enclaves), because Azure

limits the total number of DCsv2 family vCPUs that can be rented by a non-enterprise

user. Nevertheless, we believe the trend demonstrated in our evaluation applies to a larger

scale, and is sufficient to validate our implementation.

Benchmarking Models. We have implemented four ML models with their respective

workloads and privacy requirements, using TensorFlow v1.15. The first two, AlexNetS

and AlexNetL, belong to the same application where a certain number of hospitals collab-

orate with a medical tech company to train a diabetes diagnosis model based on Retinopa-

76



thy images [134]. The input images are scaled to 32⇥ 32⇥ 3 for AlexNetS and 96⇥ 96⇥ 3

for AlexNetL, to represent a smaller and a larger model, respectively. AlexNetS has

1.25M trainable parameters while AlexNetL has 15.9M trainable parameters. The third

one SpamNet is a spam filtering model utilizing LSTM [98] network with 9.6K trainable

parameters, where we use SMS messages [135] as input data. Here, the model is required

to be private and the personal SMS messages are sensitive. The last one MNIST is a 12-

layer CNN handwriting recognition model trained with MNIST dataset [136]. MNIST

model has 887.5K trainable parameters. The model owner wants to protect its intellectual

property, while data owners want to remain anonymous because the adversary may want

to forge their handwriting. The aforementioned four workloads are backed by deep learn-

ing models of various sizes and can cover diverse types of tasks. To emulate multiple data

owners, we randomly partition these datasets into multiple shards and encrypt them with

different keys before uploading them into the storage service in Citadel.

Baselines. We use two baselines for comparison. The first one is the privacy-preserving

single-enclave approach described in §4.2.3, and the second one is native-distributed,

where we run Citadel natively without SGX. We will demonstrate how Citadel can pro-

vide strong privacy and confidentiality while still achieving high processing throughput.

4.5.2 Effectiveness of Zero-Sum Masking

We first evaluate the effectiveness of Citadel’s zero-sum masking technique with the four

workloads outlined before. We report the time breakdown of one training iteration, and

present the results in fig. 4.5a-fig. 4.5d. The iteration time is measured as the timespan

from downloading fresh models in training enclaves until the aggregator enclave up-

loads the updated model. Specifically, the training portion refers to the time spent

inside training enclaves, but excludes mask-related operations and the time to transmit

masked updates to aggregator. The masking portion includes the time spent on request-

ing, downloading, and applying the masks. The aggregation portion covers the time

spent in the aggregator enclave, plus the time used to transmit all masked updates. All

results are averaged across all enclaves over multiple iterations.

As we can see, Citadel with zero-sum masking scales well with the increase of training
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Figure 4.5: The iteration time breakdown w.r.t. training enclave numbers when the zero-
sum masking is adopted.

enclaves. Octupling training enclaves from 4 to 32, the overall iteration time only increases

by 59.7% for AlexNetS, 93.9% for AlexNetL, 20.8% for SpamNet, and 53.5% for MNIST.

Looking into each portion separately, and we can see: 1) the training time stays constant

when Citadel scales out as the training operations are irrelevant to cluster size, 2) the

masking time also stays constant because of the offline mask generation described in §4.4,

and 3) the aggregation time increases (inevitably) because aggregation involves the all-

to-one communication and the summing-up of all masked gradient updates. Altogether,

these results show only a modest increase of Citadel’s iteration time with the increase of

cluster size. This in turn indicates that Citadel can accommodate a large number of data

owners and complex models with reasonable performance overhead.

4.5.3 Effectiveness of Hierarchical Aggregation

Although §4.5.2 exhibits that Citadel with zero-sum masking can effectively increase through-

put by adding more training enclaves, we also notice the increasingly significant aggre-

gation overhead with the increase of cluster size. In this subsection, we evaluate Citadel’s

hierarchical aggregation approach, and validate if it can further reduce the aggregation
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Figure 4.6: The iteration time breakdown of different models w.r.t. aggregation children
number when hierarchical aggregation is adopted. All experiments are run with 32 train-
ing enclaves. The zero-sum mask results with 32 training enclaves are shown as M bars
for reference.

overhead. The results are shown in fig. 4.6a-fig. 4.6d. We target the scenario with 32

training enclaves which is the largest cluster we are able to run in Azure. We test the hi-

erarchical aggregation approach with its aggregation tree children set to 2, 4 and 8, and

use zero-sum masking approach for reference. The recursive portion in the breakdown

refers to the timespan from when the first training enclave update is ready until the final

aggregate result is ready.

As we can see in the results, hierarchical aggregation is indeed more efficient at scale

compared with zero-sum masking. The overall iteration time is reduced by 17.7% for

AlexNetS, 21.5% for AlexNetL, 11.3% for SpamNet, and 36.1% for MNIST. With AlexNetL,

Citadel performs the best when the number of children is set to 4. When we reduce it to

2, although the computational overhead at each aggregation level decreases, the overall

gain is offset by the increased aggregation depth; while if we increase it to 8, we face

large EPC overhead at each aggregation step as 8 updates have to reside in the memory

simultaneously. In conclusion, the children number is a tradeoff knob for aggregation per-

formance and there is no one-size-fits-all optimal value across all models. We are unable

to extend our evaluation to more training enclaves, but we believe hierarchical aggrega-
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Figure 4.7: The total throughput normalized with the single-enclave solution
throughput (labeled as S) w.r.t. training enclave number.

tion can achieve better performance when Citadel scales out further, thus addressing the

bottleneck in zero-sum masking approach.

4.5.4 Citadel vs. Single Enclave

The single-enclave solution described in §4.2.3 can achieve data privacy and a limited pro-

tection of model confidentiality. In this subsection, we compare Citadel with this single-

enclave solution, and show that Citadel outperforms it in both privacy guarantees and

performance. Specifically, we profile the single-enclave solution’s throughput via training

the same models on the same Azure instance. The results are shown in fig. 4.7a-fig. 4.7d.

Note that, we show the better results between the zero-sum masking and hierarchical

aggregation approaches.

Going from a single-enclave solution to a distributed system across multiple servers,

Citadel introduces secured connections that require both network communication and

cryptographic operations. As a result, we see marginal improvements compared with

single-enclave when using only 4 training enclaves. However, with more training

enclaves, Citadel is able to further improve its training throughput substantially. Note

that, the benefit of distributed training becomes more prominent for ML models where
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Table 4.1: The slowdowns of Citadel at different scale. The 32-R column shows the hierar-
chical aggregation implementation, while the rest show zero-sum masking.

# Train. Enclave 4 8 16 32 32-R
AlexNetS 1.22 1.18 1.23 1.24 1.40
AlexNetL 1.09 1.23 1.44 1.73 1.65
SpamNet 1.21 1.21 1.22 1.19 1.26
MNIST 1.15 1.15 1.14 1.15 1.17

training takes up more total time (e.g., SpamNet in fig. 4.5c). Also note that, in our ex-

periment, we aggregate model updates after each iteration, and therefore, the result here

demonstrates the lower bound of our throughput improvement. One can easily improve

the training performance via communicating after every few iterations, a.k.a., local up-

date SGD [69, 70, 71]. With the help of such techniques, Citadel’s throughput could be

further improved.

4.5.5 SGX Overhead in Citadel

Finally, we compare Citadel against running at the native speed. To do that, we repeat

our evaluation on Citadel with the four workloads outside of SGX enclaves. All the ex-

periments are conducted on the same Azure Kubernetes cluster but with native docker

containers running the same code as in §4.5.2-§4.5.3. We seek to show how much of the

total overhead is brought by SGX in the entire workflow. We run the experiments over

multiple iterations and compile the results in table 4.1. Table 4.1 shows Citadel’s slow-

down with different numbers of training enclaves. The slowdown ranges from 1.18⇥
to 1.40⇥ for AlexNetS, 1.09⇥ to 1.73⇥ for AlexNetL, 1.19⇥ to 1.26⇥ for SpamNet, and

1.14⇥ to 1.17⇥ for MNIST, In particular, the slowdown is defined as the performance ratio

between Citadel running with and without SGX under the same configuration. We can

conclude that SGX results in 15%–73% performance slowdown, and the actual slowdown

varies for different models and scales. With larger models like AlexNetL, memory con-

sumption is higher, so the EPC paging happens more often, causing higher overhead. We

also notice that, the more training enclaves there are, the more memory it needs to finish

aggregation, thus a generally higher slowdown at larger scale.
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4.6 Discussion

In this section, we discuss some future directions of Citadel moving forward.

Fault Tolerance. Citadel’s training enclaves are stateless by nature, because model and

data are all stored into and fetched from a storage system. In case of training enclave fail-

ures, Citadel can easily launch replacements and resume the training process via restart-

ing the ongoing iteration. The training progress is always checkpointed since the updated

model is stored into storage after each iteration. If admin or aggregator enclaves fail, we

can also similarly restart the cluster and continue training.

Large Models. Citadel’s current design does not consider the scenario where models are

too big for a single enclave. Such an issue can be addressed by either increasing EPC

size with specialized SGX card [124], or applying existing model parallelism techniques

to split large models [125, 126].

4.7 Summary

In this paper, we have presented Citadel, the first scalable system for collaborative ma-

chine learning that protects both data privacy and model confidentiality with SGX. Citadel

partitions the training workload into two parts, the open-sourced data handling codes

running in training enclaves and the private model update codes running in the aggrega-

tor enclave. Citadel further imposes a barrier between the two parts by means of zero-sum

masking and hierarchical aggregation to prevent data and model leakage. Experimental

results show that Citadel scales to a large number of enclaves at the expense of a small

performance overhead due to SGX.

82



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we comprehensively review existing large-scale ML training training,

and seek to identify underlying performance and privacy issues, propose and validate

novel solutions for efficient and privacy-preserving ML systems.

We first targeted to improve efficiency in asynchronous ML training by leveraging the

trade-off between update rates and update quality. Unlike conventional asynchronous

training that passively bounds inconsistency among workers, our proposed SpecSync

makes each worker speculate about others’ updates, and actively pull fresh parameters

in case it is convinced that freshness gain out-weights the computation loss. Moreover,

we designed an heuristic online hyperparameter tuning algorithm to judiciously deter-

mine the re-synchronization behavior. SpecSync effectively sped up distributed training

without sacrificing accuracy.

Second, we scrutinized the current state of utilizing HE to conduct secure cross-silo FL.

We showed that HE’s computation overhead and large ciphertexts make it impractical

for state-of-the-art model training. To address such concern, we proposed BatchCrypt,

a system that performs quantization, encoding, and batching on gradients to drastically

reduce the encryption overhead.

Third, we investigated collaborative ML training between model providing IT firms

and data owners, and concluded that besides data privacy for data owners, model sup-

plier also has the demand to protect its model design and weights from other participants.

Driven by the lack of scalable solution for such scenario, we devised Citadel, a distributed

system that utilizes multiple SGX enclaves to establish training environment trusted by

all participating parties.
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5.1 Future Directions

Our work on large-scale ML training systems is far from solving all problems. Large-scale

ML training is undergoing fundamental shifts, we expect future ML systems to have 1)

finer-grained communication management, 2) AI-powered resource planning.

First, with ML accelerator like TPUs [137], the bottleneck of distributed ML is mov-

ing from computation to communication. This move is more extreme in scenarios like

cross-device FL, which provide only unstable connection with very little bandwidth. As

a result, more and more efforts are put into dividing communication into smaller chunks

and overlapping them with computation [70, 125]. While others have explored leverag-

ing ML’s error tolerance nature to reduce the communication size [82, 83, 84, 85]. With

the growing demand for communication-efficient ML training systems, we can combine

pipelining, compression, and fine-grained scheduling to improve ML training productiv-

ity.

Second, both ML training and serving require large amount of computing resource.

On public clouds, the overwhelmingly large configuration space makes it challenging to

estimate and choose the right cloud configuration. Recent publications explore the prob-

lem with AI-powered approaches including model fitting [138] and Bayesian optimiza-

tion [138]. However, these systems are still far from being fully-automated, advanced

profiling and domain knowledge is still required to facilitate resource configuration. With

a combination of AI technologies, we will be able to provide an one-stop solution for re-

source estimation, resource allocation, and task scheduling.
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[60] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed ma-

chine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527, 2016.

[61] W. Du, Y. S. Han, and S. Chen, “Privacy-preserving multivariate statistical analysis: Linear regression

and classification,” in Proceedings of the 2004 SIAM international conference on data mining. SIAM, 2004,

pp. 222–233.

88

https://github.com/dmlc/mxnet/issues/841


[62] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine learning,”

in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 19–38.

[63] P. Mohassel and P. Rindal, “Aby 3: a mixed protocol framework for machine learning,” in Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2018, pp. 35–52.

[64] Y. Liu, T. Chen, and Q. Yang, “Secure federated transfer learning,” arXiv preprint arXiv:1812.03337,

2018.

[65] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang, “Secureboost: A lossless federated learning

framework,” arXiv preprint arXiv:1901.08755, 2019.

[66] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 1999, pp. 223–238.

[67] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic gradient for nonconvex opti-

mization,” in NIPS, 2015.

[68] C. Zhang, H. Tian, W. Wang, and F. Yan, “Stay fresh: Speculative synchronization for fast distributed

machine learning,” in ICDCS. IEEE, 2018.

[69] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-batches, use local sgd,” arXiv

preprint arXiv:1808.07217, 2018.

[70] J. Wang and G. Joshi, “Adaptive communication strategies to achieve the best error-runtime trade-off

in local-update sgd,” arXiv preprint arXiv:1810.08313, 2018.

[71] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Local sgd with periodic averaging:

Tighter analysis and adaptive synchronization,” in NeurIPS, 2019.

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014.

[73] “FATE (Federated AI Technology Enabler),” https://github.com/FederatedAI/FATE, 2019.

[74] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for key management part 1:

General (revision 3),” NIST special publication, vol. 800, no. 57, pp. 1–147, 2012.

[75] C. Data61, “Python paillier library,” https://github.com/data61/python-paillier, 2013.

[76] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal value of adaptive gradient

methods in machine learning,” in NeurIPS, 2017, pp. 4148–4158.

[77] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A low latency framework for

secure neural network inference,” in 27th {USENIX} Security Symposium ({USENIX} Security 18), 2018,

pp. 1651–1669.

[78] “Microsoft SEAL (release 3.5),” https://github.com/Microsoft/SEAL, Apr. 2020, microsoft Research,

Redmond, WA.

89

https://github.com/FederatedAI/FATE
https://github.com/data61/python-paillier
https://github.com/Microsoft/SEAL


[79] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without

bootstrapping,” ACM Transactions on Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[80] T. Ge and S. Zdonik, “Answering aggregation queries in a secure system model,” in VLDB, 2007.

[81] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in NeurIPS, 2008.

[82] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient compression: Reducing the commu-

nication bandwidth for distributed training,” arXiv preprint arXiv:1712.01887, 2017.

[83] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad: Ternary gradients to reduce

communication in distributed deep learning,” in NeurIPS, 2017.

[84] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-efficient sgd via

gradient quantization and encoding,” in NeurIPS, 2017.

[85] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic optimization and gossip algorithms

with compressed communication,” in ICML, 2019.

[86] C. Baskin, E. Schwartz, E. Zheltonozhskii, N. Liss, R. Giryes, A. M. Bronstein, and A. Mendelson,

“Uniq: Uniform noise injection for non-uniform quantization of neural networks,” arXiv preprint

arXiv:1804.10969, 2018.

[87] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited numerical

precision,” in ICML, 2015.

[88] A. G. Anderson and C. P. Berg, “The high-dimensional geometry of binary neural networks,” in ICLR,

2018.

[89] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation: Parameter-free training of multi-

layer neural networks with continuous or discrete weights,” in NeurIPS, 2014.

[90] S. Migacz, “8-bit inference with tensorrt,” in GPU technology conference, vol. 2, 2017, p. 7.

[91] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with low precision mul-

tiplications,” arXiv preprint arXiv:1412.7024, 2014.

[92] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for 8-bit training of neural net-

works,” in NeurIPS, 2018.

[93] “Tensorflow Federated,” https://www.tensorflow.org/federated, 2019.

[94] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-Palmbach, “A generic

framework for privacy preserving deep learning,” arXiv preprint arXiv:1811.04017, 2018.

[95] “Aws deep learning ami,” https://aws.amazon.com/machine-learning/amis/, 2019.

[96] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine

learning algorithms,” 2017.

90

https://www.tensorflow.org/federated
https://aws.amazon.com/machine-learning/amis/


[97] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” in NeurIPS, 2012.

[98] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.

1735–1780, 1997.

[99] “Text generation with an rnn,” https://www.tensorflow.org/tutorials/text/text_generation, 2019.

[100] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth convolutional

neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[101] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way

to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp.

1929–1958, 2014.

[102] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne, “Private federated

learning on vertically partitioned data via entity resolution and additively homomorphic encryption,”

arXiv preprint arXiv:1711.10677, 2017.

[103] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signsgd: Compressed optimisa-

tion for non-convex problems,” arXiv preprint arXiv:1802.04434, 2018.

[104] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information leakage from

collaborative deep learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-

munications Security, 2017, pp. 603–618.

[105] K. Mandal and G. Gong, “Privfl: Practical privacy-preserving federated regressions on high-

dimensional data over mobile networks,” in Proceedings of the 2019 ACM SIGSAC Conference on Cloud

Computing Security Workshop. ACM, 2019, pp. 57–68.

[106] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor federated learning,”

in International Conference on Artificial Intelligence and Statistics. PMLR, 2020, pp. 2938–2948.

[107] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-box at-

tacks against machine learning,” in Proceedings of the 2017 ACM on Asia conference on computer and

communications security, 2017, pp. 506–519.

[108] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747,

2016.

[109] J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Why gradient clipping accelerates training: A theoretical

justification for adaptivity,” arXiv preprint arXiv:1905.11881, 2019.

[110] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 2012.

[111] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” in Advances

in neural information processing systems, 2019, pp. 8026–8037.

91

https://www.tensorflow.org/tutorials/text/text_generation


[112] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,

Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient

out-of-order execution,” in 27th {USENIX} Security Symposium ({USENIX} Security 18), 2018, pp. 991–

1008.

[113] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys: Protecting {SGX} enclaves

from practical side-channel attacks,” in 2018 {Usenix} Annual Technical Conference ({USENIX}{ATC} 18),

2018, pp. 227–240.

[114] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted cloud with haven,”

ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3, pp. 1–26, 2015.

[115] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune, “Memoir: Practical state continuity

for protected modules,” in 2011 IEEE Symposium on Security and Privacy. IEEE, 2011, pp. 379–394.

[116] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and C. Fetzer, “Pesos: Policy

enhanced secure object store,” in Proceedings of the Thirteenth EuroSys Conference, 2018, pp. 1–17.

[117] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded in-memory key-value storage with

sgx,” in Proceedings of the Fourteenth EuroSys Conference 2019, 2019, pp. 1–15.

[118] “Arm TrustZone,” https://developer.arm.com/ip-products/security-ip/trustzone, 2020.

[119] “AMD Memory Encryption,” https://developer.amd.com/wordpress/media/2013/12/AMD_

Memory_Encryption_Whitepaper_v7-Public.pdf, 2016.

[120] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox for untrusted compu-

tation on secret data,” ACM Transactions on Computer Systems (TOCS), vol. 35, no. 4, pp. 1–32, 2018.

[121] “DCsv2-series,” https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series, 2020.

[122] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[123] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer, “Tensorscone: A secure

tensorflow framework using intel sgx,” arXiv preprint arXiv:1902.04413, 2019.

[124] S. Chakrabarti, M. Hoekstra, D. Kuvaiskii, and M. Vij, “Scaling intel® software guard extensions

applications with intel® sgx card,” in Proceedings of the 8th International Workshop on Hardware and

Architectural Support for Security and Privacy, 2019, pp. 1–9.

[125] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu et al.,

“Gpipe: Efficient training of giant neural networks using pipeline parallelism,” in Advances in Neural

Information Processing Systems, 2019, pp. 103–112.

[126] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger, and P. Gibbons,

“Pipedream: Fast and efficient pipeline parallel dnn training,” arXiv preprint arXiv:1806.03377, 2018.

92

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series


[127] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. L. Quoc, S. Arnautov, A. Martin, V. Schiavoni, P. Felber,

and C. Fetzer, “Trust management as a service: Enabling trusted execution in the face of byzantine

stakeholders,” arXiv preprint arXiv:2003.14099, 2020.

[128] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library {OS} for unmodified applica-

tions on {SGX},” in 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 645–658.

[129] “mongodb,” https://www.mongodb.com/, 2020.

[130] “Kubernetes,” https://kubernetes.io/, 2020.

[131] “Docker,” https://www.docker.com/, 2020.

[132] “Python gil,” https://realpython.com/python-gil/, 2020.

[133] “Cffi,” https://cffi.readthedocs.io/en/latest/, 2020.

[134] “Diabetic retinopathy,” https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered,

2020.

[135] “Sms spam collection,” https://www.kaggle.com/uciml/sms-spam-collection-dataset, 2020.

[136] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recog-

nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[137] Google, “Cloud TPU performance guide,” https://cloud.google.com/tpu/docs/performance-guide,

2019.

[138] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient dynamic resource scheduler for

deep learning clusters,” in Proceedings of ACM EuroSys, 2018.

93

https://www.mongodb.com/
https://kubernetes.io/
https://www.docker.com/
https://realpython.com/python-gil/
https://cffi.readthedocs.io/en/latest/
https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://cloud.google.com/tpu/docs/performance-guide

	Title Page
	Authorization Page
	Signature Page
	Acknowledgments
	Contents

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	Why Efficiency and Privacy Matters in Distributed Machine Learning Training
	Three Challenges for Large Scale ML Training
	Large-Scale ML Training in Datacenters
	Cross-silo FL with HE
	Preserving Both Data and Model Privacy

	Contributions
	SpecSync: Speculative Synchronization for High Efficiency
	BatchCrypt: Efficient HE for Cross-Silo Federated Learning
	Citadel: Protecting Data Privacy and Model Confidentiality with SGX

	Thesis Outline
	List of Related Publications
	List of Other Publications

	Chapter 2 Speculative Synchronizationfor Fast Distributed Machine Learning
	Background and Motivation
	ML Problems Solved by Risk Minimization
	Parameter Server and Distributed SGD
	Synchronization Schemes

	Staying Fresh through Naïve Waiting
	Pushes after a Pull: The Source of Staleness
	Naïve Waiting

	Speculative Synchronization
	Overview
	Adaptive Hyperparameter Tuning

	Implementation
	Architecture Overview
	Workflow

	Evaluation
	Experiment Setup
	Effectiveness of SpecSync
	Robustness of SpecSync
	Communication Overhead
	SpecSync-Cherrypick vs. SpecSync-Adaptive
	Discussion

	Related Work
	Summary

	Chapter 3 Efficient Homomorphic Encryption for Cross-Silo Federated Learning
	Background and Related Work
	Cross-Silo Federated Learning
	Privacy Solutions in Federated Learning
	Cross-Silo FL Platform with HE

	Characterizing Performance Bottlenecks
	Characterization Results
	Potential Solutions and Their Inefficiency

	BatchCrypt
	Why is HE Batching for FL a Problem?
	HE Batching for Gradients
	dACIQ: Analytical Clipping for FL
	BatchCrypt: Putting It All Together

	Implementation
	Evaluation
	Methodology
	Impact of BatchCrypt's Quantization
	Effectiveness of BatchCrypt
	Batching Efficiency
	Cost Benefits

	Discussion
	Summary

	Chapter 4 Protecting Data Privacy and Model Confidentiality for Collaborative Learning with SGX
	Background and Related Work
	Collaborative ML and Threat Model
	Entities in Collaborative ML
	Threat Model

	Prior Arts and Their Insufficiency
	Existing Solutions for Different Collaborative Learning Scenarios
	Intel SGX
	Private ML with a Single SGX Enclave
	Private ML with Multiple SGX Enclaves

	Citadel Design
	Design Overview
	Separating Data and Model Handling

	Implementation
	Evaluation
	Methodology
	Effectiveness of Zero-Sum Masking
	Effectiveness of Hierarchical Aggregation
	Citadel vs. Single Enclave
	SGX Overhead in Citadel

	Discussion
	Summary

	Chapter 5 Conclusions and Future Directions
	Future Directions

	References



