
BatchCrypt: Efficient
Homomorphic Encryption for
Cross-Silo Federated Learning

Chengliang Zhang†, Suyi Li†, Junzhe Xia†, Wei Wang†, Feng Yan‡, Yang Liu*
†Hong Kong University of Science and Technology

‡University of Nevada, Reno

* WeBank

1

Federated Learning

2[1] Bonawitz, Keith, et al. "Towards federated learning at scale: System design." arXiv preprint arXiv:1902.01046 (2019).

Emerging challenge:
small & fragmented data

• Privacy concerns
§ Data breaches

• Government regulations
§ GDPR
§ CCPA

Solution: Federated Learning
Collaborative Machine Learning without
Centralized Training Data [1]

Data Silos

Target Scenario: Cross-Silo Horizontal FL

3

§ Cross-Silo: among organizations / institutions

o Banks, hospitals…

o Reliable communication and computation

o Strong privacy requirements

o As opposed to cross-device: edge devices

Hospital A Hospital B Hospital C

Target Scenario: Cross-Silo Horizontal FL

4

§ Horizontal: datasets share same feature space [2]

§ Objective: train a model together without revealing private data to third

party (aggregator) and each other
[2] Yang, Qiang, et al. "Federated machine learning: Concept and applications." ACM Transactions on Intelligent Systems
and Technology (TIST) 10.2 (2019): 1-19.

Repurpose datacenter distributed training?

5[3] Aono, Yoshinori, et al. "Privacy-preserving deep learning via additively homomorphic encryption." IEEE Transactions
on Information Forensics and Security 13.5 (2017): 1333-1345.

Gradients are not safe to share in
plaintext [3]

Federated Learning Approaches

6

[4] Gehrke, Johannes, Edward Lui, and Rafael Pass. "Towards privacy for
social networks: A zero-knowledge based definition of privacy." TCC 2011.
[5] Bagdasaryan, Eugene, Omid Poursaeed, and Vitaly Shmatikov.
"Differential privacy has disparate impact on model accuracy." NIPS. 2019.

[6] Du, Wenliang, Yunghsiang S. Han, and Shigang Chen. “Privacy-preserving
multivariate statistical analysis: Linear regression and classification.” SDM
2004.
[7] Bonawitz, Keith, et al. “Practical secure aggregation for privacy-preserving
machine learning.” CCS 2017.

Method Differential
Privacy

Secure Multi
Party Comput.

Secure
Aggregation [7]

Homomorphic
Encryption

Efficiency 🚫 [6] 🚫 🚫

Strong Privacy 🚫 [4] 🚫

No accuracy loss 🚫 [5]

Additively Homomorphic Encryption for FL

7[8] Aono, Yoshinori, et al. "Privacy-preserving deep learning via additively homomorphic encryption." IEEE Transactions
on Information Forensics and Security 13.5 (2017): 1333-1345.

• Allow computation over ciphertexts
decrypt(encrypt(a) + encrypt(b)) = a + b

• Enables oblivious aggregation

Client N…

Aggregator

! Aggregation

Single Client
Gradients

Aggregated
Gradients

HE Public Key

HE Private Key

" Encryption

Gradient
computation

$ Decryption

% Model
update

Client A

" Encryption

Gradient
computation

$ Decryption

% Model
update

Client B1. Clients produce gradients
2. Encrypt gradients and upload them to Aggregator
3. Aggregator summarizes all gradient ciphertexts
4. Clients receive aggregated gradients
5. Clients decrypt and apply model update [8]

Characterization: FL with HE

8

Why is HE expensive:
• Computation
• Communication

• Plaintext: 32bit -> ciphertext: 2000+ bit

Key
Size

Plaintext Ciphertext Encryption Decryption

1024 6.87MB 287.64MB 216.87s 68.63s

2048 6.87MB 527.17MB 1152.98s 357.17s

3072 6.87MB 754.62MB 3111.14s 993.80

Paillier HETime breakdown of one iteration
Run on FATE, models are FMNIST, CIFAR10, and LSTM

Potential Solutions

9

• Accelerate HE operations
o Limited parallelism: 3X with FPGA [9]
oCommunication stays the same

• Reduce encryption operations
oOne operation multiple data
o “batching” gradient values
oCompact plaintext, less inflation

plaintext: 2000 bit -> ciphertext 2000bit

Challenge:
Maintain HE’s additively property

Decrypting the sum of 2 batched ciphertexts
=

Adding pairs separately

-0.3 0 2.6 -1.1

1.2 0.33 -4.2 -0.2

0.9 0.33 -1.6 -1.3

+

=

[9] San, Ismail, et al. "Efficient paillier cryptoprocessor for privacy-preserving data mining." Security and communication
networks 9.11 (2016): 1535-1546..

Gradient Batching is non-trivial

10[9] San, Ismail, et al. "Efficient paillier cryptoprocessor for privacy-preserving data mining." Security and communication
networks 9.11 (2016): 1535-1546..

All ciphertexts at aggregator: no differentiation, no permutation, no shifting
Only bit-wise additions on underlying plaintexts

Gradients are floating numbers: exponent aligning is required for addition [9]

1 01111111 00011001100110011001101

sign exponent mantissa

1 01111100 10011001100110011001101

Not
addable

Quantization for Batching

11

Floating gradient values
cannot be batched ->
quantization

+

=

0111 1110 1000 0001

0000 0001 0111 1000

…
126

1

129

120
…

0111 1111 1111 1001
127 249

…

Batching with generic quantization

-0.0079

-0.9921

-1

0.0079

-0.0551

-0.0475
A generic quantization method maps [-1, 1]
To [0, 255]
Quantization: 255 * (-0.0079 - -1) / (1 - -1) = 126
Dequantization: 127 * (1 - -1) / 255 + 2 * (-1) = -1

original
value

quantized
value

Limitations
• Restrictive: client # is required
• Overflow easily: all positive integers
• No differentiation between positive and negative

overflows

Our Quantization & Batching Solution

12

Desired quantization for aggregation
• Flexible
§ Aggregation results are unbatchable only with

ciphertexts alone
• Overflow-aware
§ If overflow happens, we can tell the sign

Our Quantization & Batching Solution

13

11 111 111100 00 000 000100

11 000 001000 11 111 100100

…
-1

-126

+1

-7

00

00 …

11 000 0001 11 111 101000
-127 -6

00 …01

BatchCrypt

-0.0079

-0.9921

-1

0.0079

-0.0551

-0.0475

z bit padding r bit value

original
value

quantized
value sign bit

Customized quantization for aggregation
• Distinguish overflow

§ Signed integer
• Positive and negative cancel out each other

§ Symmetric range
§ Uniform quantization

[-1, 1] is mapped to [-127, 127]

+

=

Our Quantization & Batching Solution

14

11 111 111100 00 000 000100

11 000 001000 11 111 100100

…
-1

-126

+1

-7

00

00 …

11 000 0001 11 111 101000
-127 -6

00 …01

BatchCrypt

-0.0079

-0.9921

-1

0.0079

-0.0551

-0.0475

z bit padding r bit value

original
value

quantized
value sign bit

Customized quantization for aggregation
• Signed integer
• Symmetric range
• Uniform quantization

Challenges:
1. Differentiate overflows:

two sign bits

3. Tolerate overflowing:
padding zeros in between

2. Distinguish sign bits from value bits:
two’s compliment coding

+

=

Gradient Clipping

15

Gradients are unbounded
Quantization range is bounded
Clipping is required Tradeoff:

Smaller ɑ
Higher resolution within |ɑ|

More diminished range information

😀

☹

Gradient Clipping

16

Gradients are unbounded
quantization range is bounded
Clipping is required q Profiling quantization loss with a sample dataset [10]

• FL has non-iid data
• Gradients range diminishes during training: optimal shifts

q Analytical clipping with an online model
• Model the noises with distribution fitting
• Flexible & adaptable

[10] http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

dACIQ: Analytical Gradient Clipping

17

• Gradients distribu^on is bell-shaped: Gaussian like
• Conven^onal gaussian fibng: MLE, BI

ü Requires a lot of informaVon
ü ComputaVonally intensive

• dACIQ proposes a Gaussian Fibng method for
distributed dataset
o Only requires max, min, and size
o ComputaVonally efficient: online
o Stochas5c Rounding [11]
o Layer-wise quanVzaVon

[11] Banner, Ron, Yury Nahshan, and Daniel Soudry. "Post training 4-bit quantization of convolutional networks for rapid-
deployment." Advances in Neural Information Processing Systems. 2019.

Introducing BatchCrypt

18

• Built atop FATE v1.1
• Support TensorFlow, MXNet, and extendable to

other frameworks
• Implemented in Python
• Utilize Joblib, Numba for maximum parallelism

Client Worker

ML backend
TensorFlow

FATE
HE Mgr. Comm. Mgr.

BatchCrypt
dACIQ Quantizer

Dist. Fitting

Initializer
Encrypt

Remote
GetMXNet

2’s Comp. Codec Batch Mgr.

Advance Scaler
Quantize / Dequantize

Encode / Decode
Numba Parallel

Batch / Unbatch
Joblib Parallel

…

Clipping

BatchCrypt

Evaluations Setup

19

Model Type Network Weights

FMNIST Image Classification 3-layer-FC 101.77K

CIFAR Image Classification AlexNet 1.25M

LSTM-ptb Text Generation LSTM 4.02M

Test Models

Test Bed

o AWS
o Cluster of 10, spanning 5 locations
o C5.4xlarge instances (16 vCPUs, 32 GB memory)

Region US W. Tokyo US E. London HK

Up (Mbps) 9841 116 165 97 81

Down (Mbps) 9842 122 151 84 84

Bandwidth from clients to aggregator

BatchCrypt’s Quantization Quality

20

FMNIST
test accuracy

- Negligible loss

- Quantization sometimes
outperforms plain:
randomness adds
regularization

CIFAR
test accuracy

LSTM
loss

BatchCrypt’s Effectiveness: Computation

21

client

Iteration time breakdown of LSTM

aggregator

- Compared with stock FATE
- Batch size set to 100
- 16 bit quantization

- 23.3X for FMNIST
- 70.8X for CIFAR
- 92.8X for LSTM

Larger the model, beier the results

BatchCrypt’s Effectiveness: Communication

22

time

Network traffic consumed by communication per iteration

traffic

- Compared with stock FATE
- Batch size set to 100
- 16 bit quantization

- 66X for FMNIST
- 71X for CIFAR
- 101X for LSTM

BatchCrypt’s Overhead

23

time

Time and traffic per iteration

traffic

- Compared with plain
distributed training without
encryption

- Batch size set to 100
- 16 bit quantization

- Overhead significantly
reduced

- Practical to deploy

Feasible to train large models now

BatchCrypt’s Effectiveness: Convergence

24

Total Vme and communicaVon unVl convergence

Model Mode Epochs Acc. /Loss Time (h) Traffic (GB)

FMNIST stock 40 88.62% 122.5 2228.3
batch 68 88.37% 8.9 58.7
plain 40 88.62% 3.2 11.17

CIFAR stock 285 73.79% 9495.6 16422.0
batch 279 74.04% 131.3 227.8
plain 285 73.79% 34.2 11.39

LSTM stock 20 0.0357 8484.4 15347.3
batch 23 0.0335 105.2 175.9
plain 20 0.0357 12.3 10.4

Conclusion

25

• Characterized HE enabled cross-silo FL
• Designed an efficient HE batching scheme BatchCrypt
o Codesigning quantization, coding, & batching
o Online analytical clipping dACIQ

• Implemented, and evaluated it on AWS
o Up to 99% cost reduction

Thank you for coming!

26

BatchCrypt is open sourced at
https://github.com/marcoszh/BatchCrypt

Find me

hVps://marcoszh.github.io/
GraduaWng soon & seeking opportuniWes

https://github.com/marcoszh/BatchCrypt
https://marcoszh.github.io/

