BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning

Chengliang Zhang⁺, Suyi Li⁺, Junzhe Xia⁺, Wei Wang⁺, Feng Yan[‡], Yang Liu^{*}

⁺Hong Kong University of Science and Technology

‡University of Nevada, Reno

* WeBank

Privacy concerns

- Data breaches
- Government regulations

Federated Learning

- GDPR
- CCPA

Emerging challenge: small & fragmented data

Solution: Federated Learning Collaborative Machine Learning without Centralized Training Data [1]

Data Silos

Target Scenario: Cross-Silo Horizontal FL

- Cross-Silo: among organizations / institutions
 - Banks, hospitals...
 - Reliable communication and computation
 - Strong privacy requirements
 - $\circ~$ As opposed to cross-device: edge devices

Target Scenario: Cross-Silo Horizontal FL

Horizontal: datasets share same feature space [2]

- Large overlap of features of the two data sets
- Large overlap of sample IDs (users) of the two data sets
- Objective: train a model together without revealing private data to third

party (aggregator) and each other

[2] Yang, Qiang, et al. "Federated machine learning: Concept and applications." ACM Transactions on Intelligent Systems and Technology (TIST) 10.2 (2019): 1-19.

Repurpose datacenter distributed training?

(a) Original 20x20 image of handwritten number 0, seen as a vector over ℝ⁴⁰⁰ fed to a neural network.

(b) Recovered image using 400/10285 (3.89%) gradients (see Sect.3, Example 2). The difference with the original (a) is only at the value bar.

(c) Recovered image using 400/10285 (3.89%) gradients (see Sect.3, Example 3). There are noises but the truth label 0 can still be seen.

Gradients are not safe to share in plaintext [3]

Federated Learning Approaches

Method	Differential Privacy	Secure Multi Party Comput.	Secure Aggregation [7]	Homomorphic Encryption
Efficiency		<mark>(</mark> 6]	\odot	\bigotimes
Strong Privacy	(4]		\odot	
No accuracy loss	<mark>(</mark> [5]			

[4] Gehrke, Johannes, Edward Lui, and Rafael Pass. "Towards privacy for social networks: A zero-knowledge based definition of privacy." TCC 2011.
[5] Bagdasaryan, Eugene, Omid Poursaeed, and Vitaly Shmatikov.
"Differential privacy has disparate impact on model accuracy." NIPS. 2019.

[6] Du, Wenliang, Yunghsiang S. Han, and Shigang Chen. "Privacy-preserving multivariate statistical analysis: Linear regression and classification." SDM 2004.

[7] Bonawitz, Keith, et al. "Practical secure aggregation for privacy-preserving ⁶ machine learning." CCS 2017.

• Allow computation over ciphertexts

decrypt(encrypt(a) + encrypt(b)) = a + b

- Enables oblivious aggregation
 - 1. Clients produce gradients
 - 2. Encrypt gradients and upload them to Aggregator
 - 3. Aggregator summarizes all gradient ciphertexts
 - 4. Clients receive aggregated gradients
 - 5. Clients decrypt and apply model update

Characterization: FL with HE

Time breakdown of one iteration Run on FATE, models are **F**MNIST, **C**IFAR10, and **L**STM

Why is HE expensive:

- Computation
- Communication
 - Plaintext: 32bit -> ciphertext: 2000+ bit

Key Size	Plaintext	Ciphertext	Encryption	Decryption
1024	6.87MB	287.64MB	216.87s	68.63s
2048	6.87MB	527.17MB	1152.98s	357.17s
3072	6.87MB	754.62MB	3111.14s	993.80

Paillier HE

Potential Solutions

- Accelerate HE operations

 Limited parallelism: 3X with FPGA [9]
 Communication stays the same
- Reduce encryption operations

 One operation multiple data
 "batching" gradient values
 Compact plaintext, less inflation
 plaintext: 2000 bit -> ciphertext 2000bit

Challenge:

Maintain HE's additively property

Decrypting the sum of 2 batched ciphertexts

Adding pairs separately

[9] San, Ismail, et al. "Efficient paillier cryptoprocessor for privacy-preserving data mining." Security and communication networks 9.11 (2016): 1535-1546..

Gradient Batching is non-trivial

All ciphertexts at aggregator: no *differentiation*, no *permutation*, no *shifting* Only *bit-wise* additions on underlying plaintexts

Gradients are floating numbers: exponent aligning is required for addition [9]

[9] San, Ismail, et al. "Efficient paillier cryptoprocessor for privacy-preserving data mining." Security and communication networks 9.11 (2016): 1535-1546..

Quantization for Batching

Floating gradient values cannot be batched -> quantization

A generic quantization method maps [-1, 1] To [0, 255] Quantization: 255 * (-0.0079 - -1) / (1 - -1) = 126 Dequantization: 127 * (1 - -1) / 255 + 2 * (-1) = -1 Batching with generic quantization

Limitations

- Restrictive: client # is required
- Overflow easily: all positive integers
- No differentiation between positive and negative overflows

Our Quantization & Batching Solution

Desired quantization for aggregation

- Flexible
 - Aggregation results are unbatchable only with ciphertexts alone
- Overflow-aware
 - If overflow happens, we can tell the sign

Customized quantization for aggregation

- Distinguish overflow
 - Signed integer
- Positive and negative cancel out each other
 - Symmetric range
 - Uniform quantization

[-1, 1] is mapped to [-127, 127]

Our Quantization & Batching Solution

Customized quantization for aggregation

- Signed integer
- Symmetric range
- Uniform quantization

Challenges:

- 1. Differentiate overflows: two sign bits
- 2. Distinguish sign bits from value bits: two's compliment coding
- 3. Tolerate overflowing: padding zeros in between

Gradient Clipping

Tradeoff:

Gradient Clipping

Gradients are *unbounded* quantization range is *bounded* Clipping is required

clipping quantization clipping noise $-\alpha$ 0 α

Profiling quantization loss with a sample dataset [10]

- FL has non-iid data
- Gradients range diminishes during training: optimal shifts
- Analytical clipping with an online model
 - Model the noises with distribution fitting
 - Flexible & adaptable

dACIQ: Analytical Gradient Clipping

- Gradients distribution is bell-shaped: Gaussian like
- Conventional gaussian fitting: MLE, BI
 - ✓ Requires a lot of information
 - ✓ Computationally intensive
- *dACIQ* proposes a Gaussian Fitting method for distributed dataset
 - Only requires *max*, *min*, and *size*
 - Computationally efficient: online
 - Stochastic Rounding [11]
 - Layer-wise quantization

Introducing BatchCrypt

BatchCrypt

- Built atop FATE v1.1
- Support TensorFlow, MXNet, and extendable to other frameworks
- Implemented in Python
- Utilize Joblib, Numba for maximum parallelism

Evaluations Setup

Test Models

Model	Туре	Network	Weights
FMNIST	Image Classification	3-layer-FC	101.77K
CIFAR	Image Classification	AlexNet	1.25M
LSTM-ptb	Text Generation	LSTM	4.02M

Test Bed

- o AWS
- Cluster of 10, spanning 5 locations
- C5.4xlarge instances (16 vCPUs, 32 GB memory)

Region	US W.	Tokyo	US E.	London	НК
Up (Mbps)	9841	116	165	97	81
Down (Mbps)	9842	122	151	84	84

Bandwidth from clients to aggregator

BatchCrypt's Quantization Quality

- Negligible loss
- Quantization sometimes outperforms plain: randomness adds regularization

BatchCrypt's Effectiveness: Computation

Iteration time breakdown of LSTM

- Compared with stock FATE
- Batch size set to 100
- 16 bit quantization
- 23.3X for FMNIST
- 70.8X for CIFAR
- 92.8X for LSTM

Larger the model, better the results

BatchCrypt's Effectiveness: Communication

1341

Network traffic consumed by communication per iteration

snd

- Compared with stock FATE
- Batch size set to 100
- 16 bit quantization -
- 66X for FMNIST
- 71X for CIFAR
- **101X** for LSTM

BatchCrypt's Overhead

Time and traffic per iteration

Feasible to train large models now

- Compared with plain distributed training without encryption
- Batch size set to 100
- 16 bit quantization
- Overhead significantly reduced
- Practical to deploy

Total time and communication until convergence

Model	Mode	Epochs	Acc. /Loss	Time (h)	Traffic (GB)
FMNIST	stock	40	88.62%	122.5	2228.3
	batch	68	88.37%	8.9	58.7
	plain	40	88.62%	3.2	11.17
CIFAR	stock	285	73.79%	9495.6	16422.0
	batch	279	74.04%	131.3	227.8
	plain	285	73.79%	34.2	11.39
LSTM	stock	20	0.0357	8484.4	15347.3
	batch	23	0.0335	105.2	175.9
	plain	20	0.0357	12.3	10.4

- Characterized HE enabled cross-silo FL
- Designed an efficient HE batching scheme BatchCrypt
 - Codesigning quantization, coding, & batching
 - Online analytical clipping dACIQ
- Implemented, and evaluated it on AWS
 - Up to 99% cost reduction

Thank you for coming!

BatchCrypt is open sourced at https://github.com/marcoszh/BatchCrypt

Find me

https://marcoszh.github.io/

Graduating soon & seeking opportunities