

Not All Explorations Are Equal: Harnessing Heterogeneous Profiling Cost for Efficient MLaaS Training

Jun Yi¹, Chengliang Zhang², Wei Wang², Cheng Li³, Feng Yan¹

¹University of Nevada, Reno

²Hong Kong University of Science and Technology

³University of Science and Technology of China

Resource Acknowledgement

Image: Non-StateProblem

Practical MLaaS training scenarios:

- Scenario-1: Training project without time or cost limit
- Scenario-2: Training project with time limitation
- Scenario-3: Training project with cost limitation

How to deploy MLaaS training jobs in Cloud? Scale-up (more capable instance) VS scale-out (more instances)

E.g., use many cheapest instances (40 c5.4xlarge) or a few costly instances (9 p2.xlarge)? Neither case is optimal (see the right figure)

IPDPS20

Challenges and Existing Work

Challenges: large deployment scheme search space (62 scale-up & 50 scale-out->3100 schemes)

Existing Work

Analytical Modeling (assumptions on model/hardware)	 Limited applicability (fast- evolving ML models) Poor fit for cloud (increasing diversified hardware) 	 [SIGKDD '15] Performance modeling and scalability optimization of distributed deep learning systems [ICLR, '17] Paleo: A performance model for deep neural networks.
Reinforcement Learning	 Requires extensive training samples and high computing resources 	 [Nature '15] Human-level control through deep reinforcement learning.
Pareto-Optimization	Falls short in performance	 [CCGRID '17] Predicting cloud performance for hpc applications: A user-oriented approach.
Conventional Bayesian Optimization (BO) (assume uniform profiling cost of every point)	 Assume uniform exploration cost Lack of ML-specific insights 	 [NSDI '17] CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics. [ICDCS '18] Arrow: Low-level augmented bayesian optimization for finding the best cloud vm.

N Key Observations and Main Idea

Conventional BO:

- For problems with unknow objective function
- Start with random initial points
- Select next points based on acquisition function
- Acquisition function optimizes expected improvement, probability of improvement, confidence bound, etc.

Key Observations

- Heterogenous exploration cost
 - Some schemes (i.e., large scale-out, high-end GPU instance) are more costly to explore than others
- No ML-specific prior is adopted in deployment optimization
 - Speedup trend of scale-out follows a concave-shape curve

Main Idea: Heterogenous cost-aware and ML prior aware BO

IPDPS20

HeterBO Overview

- Problem formulation minimize T(D)/C(D)subject to $D \in D(m, n)$ T(D) - Total Time; C(D) - Total Cost D(m, n) - Possible schemes; m - Instance type n - Number of selected Instance type
- Search process 2. Update BO model 3. Implement 1. Profile initial with new profile HeterBO based on config config **3** Scenarios No 4. Decide and 5. Meet Yes 6. Terminate profile next stop condition? chosen config

Key Components

- Prior function: Gaussian Process (flexibility and tractability)
- Acquisition function: EI (Expected Improvements) with constraints (profiling cost) -> T(rue)EI
- > Heterogeneous search cost aware: avoid randomly jumping into high profile cost regions
- ML-specific aware: detects down slope of the concave-shape -> avoid high overheads

HeterBO Example

- \succ y₁ and y₂ are profiled points
- Not select the maximum point in acquisition function as next point (i.e., ConvBO)
- HeterBO considers the user constraints and heterogeneous search cost when selecting next point (35% less profiling cost)

IPDPS20

MLaaS training Cloud Deployment system (MLCD):

Eval Setup & Performance Comparison IPDPS20

Testbed

• AWS CPU, GPU instances

ML platforms

TensorFlow and MXNet

ML Models

 AlexNet, ResNet, Inception-v3, CharCNN, BERT

HeterBO vs. Existing Approaches using TensorFlow

Limited monetary budget (\$80) scenario

Limited total time (20 hours) scenario

HeterBO finishes on time (ConvBO/CheeryPick not) 44.8% and 28.9% better than ConvBO and CheeryPick in Total Cost 8

HeteBO costs under budget (ConvBO/Paleo not) **36.4%** and **12.5%** better than ConvBO and Paleo in Total Time

Robustness and Adaptivity

IPDPS20

Total cost vs Budget

HeterBO outperforms SOTA by up to **3.1**×

Char-RNN using TensorFlow

HeterBO found optimal within budget \$120

Total Time vs Budget

HeterBO outperforms SOTA by up to $\mathbf{2.34} imes$

BERT using MXNet

HeterBO found optimal within budget \$120

R

Takeaway:

Not all explorations are equal: heterogeneous exploration cost + machine learning specific prior

→ A fully-automated MLaaS training Cloud Deployment system (MLCD) driven by HeterBO search method

Jun Yi

junyi@nevada.unr.edu, <u>https://www.cse.unr.edu/~jyi/</u> <u>https://www.youtube.com/channel/UCMgXRQdpjlmc5GLkGV0Av8g?view_as=subscriber</u>

Research Grants Council of Hong Kong 香港研究資助局

