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MLaaS
(Machine Learning as Service)
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How to deploy MLaaS training jobs in Cloud? 
Scale-up (more capable instance) 

VS scale-out (more instances)

Up to 42.5X in hourly cost

E.g., use many cheapest instances (40 c5.4xlarge) 
or a few costly instances (9 p2.xlarge)? 
Neither case is optimal (see the right figure)
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Practical MLaaS training scenarios:
• Scenario-1: Training project without time or cost limit
• Scenario-2: Training project with time limitation
• Scenario-3: Training project with cost limitation

Problem
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Challenges: large deployment scheme search space (62 scale-up & 50 scale-out->3100 schemes)

Existing Work

Analytical Modeling
(assumptions on model/hardware)

• Limited applicability (fast-
evolving ML models)

• Poor fit for cloud (increasing 
diversified hardware)

v [SIGKDD ‘15] Performance modeling 
and scalability optimization of 
distributed deep learning systems

v [ICLR, ’17] Paleo: A performance model 
for deep neural networks.

Reinforcement Learning
• Requires extensive training 

samples and high computing
resources

v [Nature ‘15] Human-level control 
through deep reinforcement learning.

Pareto-Optimization • Falls short in performance
v [CCGRID ‘17] Predicting cloud 

performance for hpc applications: A 
user-oriented approach.

Conventional Bayesian 
Optimization (BO)

(assume uniform profiling cost of 
every point)

• Assume uniform exploration 
cost

• Lack of ML-specific insights

v [NSDI ‘17] CherryPick: Adaptively 
Unearthing the Best Cloud 
Configurations for Big Data Analytics.

v [ICDCS ‘18] Arrow: Low-level 
augmented bayesian optimization for 
finding the best cloud vm.
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Conventional BO:
- For problems with unknow objective function
- Start with random initial points
- Select next points based on acquisition function
- Acquisition function optimizes expected 
improvement, probability of improvement,  
confidence bound, etc.

Ø Heterogenous exploration cost
§ Some schemes (i.e., large scale-out, high-end GPU instance) 

are more costly to explore than others

Ø No ML-specific prior is adopted in deployment 
optimization
§ Speedup trend of scale-out follows a concave-shape curve

Key Observations

Main Idea: Heterogenous cost-aware and ML prior aware BO 
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𝑇 𝐷 - Total Time; 𝐶 𝐷 - Total Cost
𝐷(𝑚, 𝑛) - Possible schemes; 𝑚 - Instance type
𝑛 – Number of selected Instance type

minimize    𝑇 𝐷 /𝐶 𝐷
subject to    𝐷 ∈ 𝐷(𝑚, 𝑛)

Ø Prior function: Gaussian Process (flexibility and tractability)
Ø Acquisition function: EI (Expected Improvements) with constraints (profiling cost) -> T(rue)EI
Ø Heterogeneous search cost aware: avoid randomly jumping into high profile cost regions
Ø ML-specific aware: detects down slope of the concave-shape -> avoid high overheads

• Problem formulation

• Search process

• Key Components
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Ø 𝑦! and 𝑦" are profiled points

Ø Not select the maximum point in acquisition function as next point (i.e., ConvBO)

Ø HeterBO considers the user constraints and heterogeneous search cost when 
selecting next point (35% less profiling cost)

HeterBO Example
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MLaaS training Cloud Deployment system (MLCD):
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Testbed
• AWS CPU, GPU instances
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Total Cost Total Time

HeterBO vs. Existing Approaches using TensorFlow 

Total Cost Total Time
Limited total time (20 hours) scenario

ML platforms
• TensorFlow and MXNet

HeteBO costs under budget (ConvBO/Paleo not)
36.4% and 12.5% better than ConvBO and Paleo

in Total Time

HeterBO finishes on time (ConvBO/CheeryPick not)
44.8% and 28.9% better than ConvBO and CheeryPick

in Total Cost

ML Models
• AlexNet, ResNet, Inception-v3, 

CharCNN, BERT

Limited monetary budget ($80) scenario
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BERT using MXNet

Total cost vs Budget Total Time vs Budget

HeterBO outperforms SOTA by up to 3.1× HeterBO outperforms SOTA by up to 2.34×

HeterBO found optimal within budget $120

Char-RNN using TensorFlow

HeterBO found optimal within budget $120
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Jun Yi, looking for internships.
junyi@nevada.unr.edu, https://www.cse.unr.edu/~jyi/
https://www.youtube.com/channel/UCMgXRQdpjlmc5GLkGV0Av8g?view_as=subscriber
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Not all explorations are equal: heterogeneous exploration cost + 
machine learning specific prior
à A fully-automated MLaaS training Cloud Deployment system 
(MLCD) driven by HeterBO search method

Takeaway:

https://www.cse.unr.edu/~jyi/
https://www.youtube.com/channel/UCMgXRQdpjlmc5GLkGV0Av8g%3Fview_as=subscriber

