
Stay Fresh:
Speculative Synchronization for

Fast Distributed Machine Learning
Chengliang Zhang†, Huangshi Tian†, Wei Wang†, Feng Yan‡

†Hong Kong University of Science and Technology
‡University of Nevada, Reno

9/17/18 1

Outline

•Background and Motivation
• Insights of Distributed Asynchronous Learning
•Solution: Speculative Synchronization
• Implementation
•Evaluation
•Conclusion

9/17/18 2

Large Scale Machine Learning

9/17/18 3

• Machine learning learns
from data
• More data leads to better

accuracy
• Complex models can

further improve accuracy

[1] Li, Mu. ”Scaling distributed machine learning with system and algorithm co-design.” Diss. Intel, 2017.

Big data and complex models

Distribute workload among
many machines

Parameter Server
state-of-the-art architecture for distributed ML

9/17/18 4

[1] Li, Mu, et al. "Scaling Distributed Machine Learning with the Parameter Server." OSDI. Vol. 14. 2014.

Global
Parameters

server server server server

worker worker worker

parameter
replica
data
shard

pu
sh

pu
ll

training data

modelIterate until stop:
• workers compute

updates
• workers push updates
• servers update model
• workers pull updated

model

Synchronization Schemes

9/17/18 5

• Bulk Synchronous Parallel (BSP)
• Strong consistency
• Straggler
• Concurrent

communication
• Low throughput

• Asynchronous Parallel (ASP)
• No barrier
• High throughput
• Cheap synchronization
• Inconsistency

Inconsistency and Convergence

9/17/18 6

[1] J. Langford, A. J. Smola, and M. Zinkevich, “Slow learners are fast,” in NIPS, 2009.

• Inconsistent model replicas
among workers

• Stale parameters poison
convergence

• Stale Synchronous Parallel (SSP) :
bound the staleness

o tradeoff between update rates and update quality

Asynchronous learning
Higher rate of updates

Lower quality of updates

Good for convergence

Bad for convergence

Parameter replica:
the fresher the better

Insights: Pushes after Pull

9/17/18 7

• Worker 1 eagerly pulls
after push

• Misses updates from
others

• 3 PAPs on average
• Missed opportunity for

fresher parameters

worker 1

worker 2

worker 3

worker 4
t1t1 time

visible
update
invisible
update
push

pull
!"

Naïve Waiting

9/17/18 8

push

pulltNaive Waiting

delay

worker 1

worker 2

worker 3

worker 4

time

visible
update
invisible
update

Intuition
simply defer the pull request
PAPs will be included

Naïve Waiting

9/17/18 9

• Works, but not always

Desired:
freshness gain > computation loss

Invalid wait:
freshness gain < computation loss

push

pullSpeculative
Synchronization

aborted
computation

worker 1

worker 2

worker 3

worker 4
t1t1 timet2t2

visible
update
invisible
update

Speculative Synchronization

9/17/18 10

SpecSync: speculatively abort the ongoing
computation and start over with fresher parameters

Gain:
fresh parameters

Lost:
aborted
computation

Speculative Synchronization

9/17/18 11

Advantages:
• Avoid invalid waits
• Minimize the cost of
wasted computing
cycles

• Suitable for
asynchronous models
including ASP and SSP

Challenges:
• Efficient communication

o Exchange worker
progress

o Additional parameter
pull

• When to abort and restart

Hyperparameters

9/17/18 12

abort_time and abort_rate
For a worker, in the first abort_time, if more than
abort_rate * m updates arrive at severs, re-synchronize.

tabort_time

worker i

updated
abort_rate * m
times

pull

Given a workload, how
do we choose
abort_time and
abort_rate?

Formulation

9/17/18 13

How to model the gain and loss of re-synchronization?

w/o resync

w resync

Gain:
More updates from
other workers

Loss:
Other worker lose 1 update from
the delay

uncovered updates missed peers

∆

∆

net gain = -

"#,%(∆) (#,%(∆))#,%(∆) = -
Only re-sync when)#,% ∆ > 0

Formulation

9/17/18 14

Sum up the gain over all workers in epoch !

"#$%"%&'∆)*(∆) =.
/01

2
(3/,* ∆ − 6/,*(∆))

How to solve?

• Direct solution: require exact push/pull sequence

• Estimation: use traces and expectations from last epoch

Adaptive Tuning

9/17/18 15

Once we have optimal ∆∗

• Set abort_time to ∆∗ to maximize potential gain
• Set abort_rate to the expected missed peers
• Only abort if the gain outweighs loss

Implementation

9/17/18 16

Worker

Server Server

Worker Worker

Scheduler

push & pull

notify

re-sync

An extension to MXNet.

Centralized design

Scheduler:
• Keep tracks of updates

• Tune abort_time and abort_rate

• Issue re-sync command to workers

Evaluation

9/17/18 17

• Effectiveness
§ Accuracy and runtime

• Robustness
§ heterogeneity and scalability

• Communication Overhead

Evaluation Setup

9/17/18 18

workload

parameters

dataset
dataset
size

MF 4.2 million Movielens 100,000

CIFAR-10 2.5 million CIFAR-10 50,000

ImageNet 5.9 million ImageNet 281,167

• Workload

• Schemes
§ Original: stock MXNet asynchronous implementation
§ SpecSync-cherrypick: SpecSync with cherrypicked hyperparameters
§ SpecSync-adaptive: SpecSync with adaptively tuned hyperparameters

• Testbed
§ AWS EC2

Effectiveness

9/17/18 19

40 m4.xlarge instances

• SpecSync improves performance
• 2.97� 2.25� 3� speedup respectively
• Adaptive tuning, comparable

speedups

Robustness

9/17/18 20

• Heterogeneity
10 m3.xlarge+ 10 m3.2xlarge +
10 m4.xlarge + 10 m4.2xlarge

• Heterogeneity increases inconsistency,
affects performance

• SpecSync work both in homogeneous
and heterogeneous settings

Robustness

9/17/18 21

• Scalability

20, 30, 40 m4.xlarge

Running for the same durationRunning until the same loss

Communication Overhead

9/17/18 22

SpecSync introduces additional communication

• The accumulated
communication
does not increase

Conclusion

• Investigated inconsistency in distributed ML
• Proposed SpecSync to actively improve freshness
• Designed an adaptive hyperparameter tuning
algorithm

• Implemented SpecSync atop MXNet and evaluated it.

9/17/18 23

Thank you for listening!

Q&A

9/17/18 24

