
Stay Fresh: 
Speculative Synchronization for 

Fast Distributed Machine Learning 
Chengliang Zhang†, Huangshi Tian†, Wei Wang†, Feng Yan‡ 

†Hong Kong University of Science and Technology 
‡University of Nevada, Reno

9/17/18 1



Outline

•Background and Motivation
• Insights of Distributed Asynchronous Learning
•Solution: Speculative Synchronization
• Implementation
•Evaluation
•Conclusion

9/17/18 2



Large Scale Machine Learning
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• Machine learning learns
from data
• More data leads to better

accuracy
• Complex models can

further improve accuracy

[1] Li, Mu. ”Scaling distributed machine learning with system and algorithm co-design.” Diss. Intel, 2017.

Big data and complex models

Distribute workload among
many machines



Parameter Server
state-of-the-art architecture for distributed ML
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[1] Li, Mu, et al. "Scaling Distributed Machine Learning with the Parameter Server." OSDI. Vol. 14. 2014.
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Synchronization Schemes

9/17/18 5

• Bulk Synchronous Parallel (BSP) 
• Strong consistency
• Straggler
• Concurrent

communication
• Low throughput

• Asynchronous Parallel (ASP) 
• No barrier
• High throughput
• Cheap synchronization
• Inconsistency



Inconsistency and Convergence
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[1] J. Langford, A. J. Smola, and M. Zinkevich, “Slow learners are fast,” in NIPS, 2009. 

• Inconsistent model replicas
among workers

• Stale parameters poison
convergence

• Stale Synchronous Parallel (SSP) :
bound the staleness

o tradeoff between update rates and update quality

Asynchronous learning
Higher rate of updates

Lower quality of updates

Good for convergence

Bad for convergence

Parameter replica:
the fresher the better



Insights: Pushes after Pull
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• Worker 1 eagerly pulls
after push

• Misses updates from
others

• 3 PAPs on average
• Missed opportunity for

fresher parameters

worker 1

worker 2

worker 3

worker 4
t1t1 time

visible
update
invisible
update
push

pull
!"



Naïve Waiting
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push
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delay
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Intuition
simply defer the pull request
PAPs will be included



Naïve Waiting
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• Works, but not always

Desired:
freshness gain > computation loss

Invalid wait:
freshness gain < computation loss



push

pullSpeculative
Synchronization
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Speculative Synchronization
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SpecSync: speculatively abort the ongoing 
computation and start over with fresher parameters 

Gain:
fresh parameters

Lost:
aborted
computation



Speculative Synchronization
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Advantages:
• Avoid invalid waits
• Minimize the cost of
wasted computing
cycles

• Suitable for
asynchronous models
including ASP and SSP

Challenges:
• Efficient communication

o Exchange worker
progress

o Additional parameter
pull

• When to abort and restart



Hyperparameters
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abort_time and abort_rate
For a worker, in the first abort_time, if more than
abort_rate * m updates arrive at severs, re-synchronize.

tabort_time

worker i

updated
abort_rate * m
times

pull

Given a workload, how
do we choose
abort_time and
abort_rate?



Formulation
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How to model the gain and loss of re-synchronization?

w/o resync

w resync

Gain:
More updates from
other workers

Loss:
Other worker lose 1 update from
the delay

uncovered updates missed peers

∆

∆

net gain = -

"#,%(∆) (#,%(∆))#,%(∆) = -
Only re-sync when )#,% ∆ > 0



Formulation
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Sum up the gain over all workers in epoch !

"#$%"%&'∆)*(∆) =.
/01

2
(3/,* ∆ − 6/,*(∆))

How to solve?

• Direct solution: require exact push/pull sequence

• Estimation: use traces and expectations from last epoch



Adaptive Tuning
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Once we have optimal ∆∗

• Set abort_time to ∆∗ to maximize potential gain
• Set abort_rate to the expected missed peers
• Only abort if the gain outweighs loss



Implementation
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Worker

Server Server

Worker Worker

Scheduler

push & pull

notify

re-sync

An extension to MXNet.

Centralized design

Scheduler:
• Keep tracks of updates

• Tune abort_time and abort_rate

• Issue re-sync command to workers



Evaluation
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• Effectiveness
§ Accuracy and runtime

• Robustness
§ heterogeneity and scalability

• Communication Overhead



Evaluation Setup
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workload 
# 
parameters 

dataset 
dataset 
size 

MF 4.2 million Movielens 100,000 

CIFAR-10 2.5 million CIFAR-10 50,000 

ImageNet 5.9 million ImageNet 281,167 

• Workload

• Schemes
§ Original: stock MXNet asynchronous implementation
§ SpecSync-cherrypick: SpecSync with cherrypicked hyperparameters
§ SpecSync-adaptive: SpecSync with adaptively tuned hyperparameters

• Testbed
§ AWS EC2



Effectiveness
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40 m4.xlarge instances

• SpecSync improves performance
• 2.97� 2.25� 3� speedup respectively
• Adaptive tuning, comparable

speedups



Robustness
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• Heterogeneity
10 m3.xlarge+ 10 m3.2xlarge +
10 m4.xlarge + 10 m4.2xlarge

• Heterogeneity increases inconsistency,
affects performance

• SpecSync work both in homogeneous
and heterogeneous settings



Robustness
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• Scalability

20, 30, 40 m4.xlarge

Running for the same durationRunning until the same loss



Communication Overhead
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SpecSync introduces additional communication

• The accumulated
communication
does not increase



Conclusion

• Investigated inconsistency in distributed ML
• Proposed SpecSync to actively improve freshness
• Designed an adaptive hyperparameter tuning
algorithm

• Implemented SpecSync atop MXNet and evaluated it.
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Thank you for listening!

Q&A
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