Stay Fresh: Speculative Synchronization for Fast Distributed Machine Learning

Chengliang Zhang, *Huangshi Tian*, *Wei Wang*, *Feng Yan*
†Hong Kong University of Science and Technology
‡University of Nevada, Reno
Outline

• Background and Motivation
• Insights of Distributed Asynchronous Learning
• Solution: Speculative Synchronization
• Implementation
• Evaluation
• Conclusion
Large Scale Machine Learning

- Machine learning learns from data
- More data leads to better accuracy
- Complex models can further improve accuracy

Big data and complex models

Distribute workload among many machines

Parameter Server

state-of-the-art architecture for distributed ML

Iterate until stop:
• workers compute updates
• workers push updates
• servers update model
• workers pull updated model

Synchronization Schemes

- Bulk Synchronous Parallel (BSP)
 - Strong consistency
 - Straggler
 - Concurrent communication
 - Low throughput

- Asynchronous Parallel (ASP)
 - No barrier
 - High throughput
 - Cheap synchronization
 - Inconsistency
Inconsistency and Convergence

- Inconsistent model replicas among workers
- Stale parameters poison convergence
- Stale Synchronous Parallel (SSP): bound the staleness

Parameter replica: the fresher the better

- tradeoff between update rates and update quality

Asynchronous learning

- Higher rate of updates: Good for convergence
- Lower quality of updates: Bad for convergence

Insights: Pushes after Pull

- Worker 1 eagerly pulls after push
- Misses updates from others
- 3 PAPs on average
- Missed opportunity for fresher parameters
Naïve Waiting

Intuition
simply *defer* the pull request
PAPs will be included
Naïve Waiting

- Works, but not always

Desired:
freshness gain > computation loss

Invalid wait:
freshness gain < computation loss
Speculative Synchronization

SpecSync: speculatively **abort** the ongoing computation and **start over** with fresher parameters

- **Gain:** fresh parameters
- **Lost:** aborted computation

![Diagram of Speculative Synchronization](image)
Speculative Synchronization

Advantages:
• Avoid invalid waits
• Minimize the cost of wasted computing cycles
• Suitable for asynchronous models including ASP and SSP

Challenges:
• Efficient communication
 o Exchange worker progress
 o Additional parameter pull
• When to abort and restart
Hyperparameters

abort_time and abort_rate

For a worker, in the first *abort_time*, if more than *abort_rate * m* updates arrive at servers, re-synchronize.

Given a workload, how do we choose *abort_time* and *abort_rate*?
Formulation

How to model the gain and loss of re-synchronization?

w/o resync

w resync

Gain:
More updates from other workers

Loss:
Other worker lose 1 update from the delay

\[
\text{net gain} = \text{uncovered updates} - \text{missed peers}
\]

\[
F_{i,\tau}(\Delta) = u_{i,\tau}(\Delta) - l_{i,\tau}(\Delta)
\]

Only re-sync when \(F_{i,\tau}(\Delta) > 0 \)
Formulation

Sum up the gain over all workers in epoch τ

$$\maximize_{\Delta} F_{\tau}(\Delta) = \sum_{i=1}^{m} (u_{i,\tau}(\Delta) - l_{i,\tau}(\Delta))$$

How to solve?

• Direct solution: require exact push/pull sequence

• Estimation: use traces and expectations from last epoch
Adaptive Tuning

Once we have optimal Δ^*

- Set `abort_time` to Δ^* to maximize potential gain
- Set `abort_rate` to the expected missed peers
- Only abort if the gain outweighs loss
An extension to MXNet.

Centralized design

Scheduler:
- Keep tracks of updates
- Tune abort_time and abort_rate
- Issue re-sync command to workers
Evaluation

- Effectiveness
 - Accuracy and runtime

- Robustness
 - heterogeneity and scalability

- Communication Overhead
Evaluation Setup

• **Workload**

<table>
<thead>
<tr>
<th>workload</th>
<th># parameters</th>
<th>dataset</th>
<th>dataset size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF</td>
<td>4.2 million</td>
<td>Movielens</td>
<td>100,000</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>2.5 million</td>
<td>CIFAR-10</td>
<td>50,000</td>
</tr>
<tr>
<td>ImageNet</td>
<td>5.9 million</td>
<td>ImageNet</td>
<td>281,167</td>
</tr>
</tbody>
</table>

• **Schemes**
 - Original: stock MXNet asynchronous implementation
 - SpecSync-*cherrypick*: SpecSync with cherrypicked hyperparameters
 - SpecSync-*adaptive*: SpecSync with adaptively tuned hyperparameters

• **Testbed**
 - AWS EC2
Effectiveness

40 m4.xlarge instances

- SpecSync improves performance
- $2.97 \times 2.25 \times 3 \times$ speedup respectively
- Adaptive tuning, comparable speedups
Robustness

- **Heterogeneity**
 10 m3.xlarge + 10 m3.2xlarge + 10 m4.xlarge + 10 m4.2xlarge

- Heterogeneity increases inconsistency, affects performance
- SpecSync work both in homogeneous and heterogeneous settings
Robustness

• Scalability

20, 30, 40 m4.xlarge

Running until the same loss

Running for the same duration
SpecSync introduces additional communication

- The accumulated communication does not increase
Conclusion

- Investigated inconsistency in distributed ML
- Proposed SpecSync to actively improve freshness
- Designed an adaptive hyperparameter tuning algorithm
- Implemented SpecSync atop MXNet and evaluated it.
Thank you for listening!

Q&A