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Machine Learning Serving - MLaaS

Deploy a trained model on cloud for user requests

• Highly dynamic demand

• Stringent Service Level Objectives on latency
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+

= “tabby cat”

• Scale to dynamic queries

• SLO-aware: e.g. 98% of the 

requests must be served 

under 500ms

• Cost-effective

Objectives of serving on public cloud



Conventional Autoscaling – AWS SageMaker
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[1] https://people.mpi-sws.org/~arpanbg/pdfs/middleware2017_slides.pdf

• Reactive scaling: based on current load

Hide provisioning time -> over-provisioning

Provisioning

Time

(minutes)

Execution

Time

(< 1s)
>>

e.g, in AWS EC2, serving an inception-v3 query is 20,000
times more expensive than redis query

Sagemaker suggests to adjust over-provisioning 

factor from 2



ML accelerators: GPU, TPU, FPGA
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• Mass parallel support

• Essential for training complex models

• Expensive

Inference

• Run comfortably without them

• Way less parallelism

CPU: m5.xlarge: $0.192 per hour

GPU: p2.xlarge: $0.9 per hour

TPU v2: $4.5 per hour

- Choose between CPU and 

accelerators

- Justify the price tag



Characterization: CPU vs. GPU vs. TPU
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• CPU: no significant benefits for 

small instances

• GPU & TPU: benefit substantially

• GPUs can be cheaper, but only 

with batching and high 

utilization

CPU: 1 vCPU, 2 GB mem; GPU: K80; TPU: TPU-v2

- Tradeoff

Longer 

queuing delay

Larger 

batch size

Better cost-

effectiveness



Numerous Choices on Cloud
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•
• Large configuration space: AWS offers 

more than 200 instance types in EC2 alone

• Cost-performance trade-offs

o Preemptable instances (spot market)

o Burstable instances

- The right service

- Appropriate configuration

- Exploit the discounts without 

sacrificing SLO

Infrastructure as a Service

(VMs)

Container as a Service

(Containers)

Function as a Service

( serverless comp.)



Cloud Services for Model Serving
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Infrastructure as a Service
(IaaS)

Container as a Service
(CaaS)

Function as a Service
(FaaS, serverless comp.)

EC2: c5.large; ECS: 2vCPU, 4GB mem; Lambda: 3008MB mem

Combine IaaS’s cost advantage with FaaS’s scalability
- Instead of overprovisioning IaaS, use FaaS to handle 

demand surge and spikes

Pay-as-you-go Pay for what you use



IaaS: Instance Families and Sizes
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M1: Inception-v3, M2: Inception-Resnet, M3: OpenNMT-ende.

Price and latency normalized by the value of c5.large

There are 4 families of instance in 

EC2 :

• general purpose m

• compute optimized c

• memory optimized r

• burstable t

• The bottleneck is CPU

• Performance grows sub-linearly 

with size



IaaS: Spot Instances
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• Discounted: up to 75% off, dynamic pricing

• Transient resource: providers can take it back, interruptions 

ML serving is 

stateless
• Requests are independent

• The response only depends on the requests

• No consistency requirement



Characterization Summary
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• Cloud services: IaaS is cost-effective, FaaS has the best 

scalability

• With on-demand pricing, smaller CPU instances are 

preferable, cheaper, smaller scaling step size

• Accelerator batching: important control nob for cost and 

latency tradeoff

• Safe to use spot instances



Design Considerations
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Cost-effectiveness
• To maintain high utilization and hide 

provisioning time: workload prediction 

+ proactive provisioning

• Use FaaS to reduce over-provisioning

• Adopt spot instances: online 

provisioning algorithm

Accelerator Support
• Use dynamic batching, batching 

requests according to arrival rate 

and SLO specification

Batching guideline:

• After batching, SLOs can’t be violated

• The overall throughput should be better 

than pre-bathing



Design Considerations Cont.
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SLO-awareness
• Overall response time: no closed form solution

• ML inference execution time is deterministic

[1] Gujarati, Arpan, et al. "Swayam: distributed autoscaling to meet SLAs of machine learning inference services with 

resource efficiency." Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference. ACM, 2017.

99% of the requests must complete under 1s

Best effort solution:
Monitor the queuing time for each request, 

direct requests to FaaS when necessary



Introducing MArk (Model Ark)
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• Weighted round robin for load balancing

• Server front implemented with Sanic

framework

• Support TensorFlow Serving, MXNet Model 

Serving, and other custom servables

• Nginx and Gunicorn for admission and 

parallelism control

• Support for spot instances

• Can be ported to all popular cloud platforms



Proactive Provisioning
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- MArk: plug any predictive algorithm that best suits the workload 

Heterogeneous Cluster

Deterministic processing time

Assume Poisson arrival

A compilation of M/D/c 

queues

No closed form 

solution

Heuristic: Greedy Provisioning
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• Expose long-term trade-offs

• Find the cheapest instance: the # of 

requests to serve / (charge by the 

min. + launch overhead)



Evaluations Setup
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Model Type Framework Size 

Inception-v3 Image Classification Tensorflow Serving 45MB 

NASNet Image Classification Keras 343MB 

LSTM-ptb Language Modeling MXNet Model Server 16MB 

OpenNMT-ende Machine Translation Tensorflow Serving 330MB 

Test Models

Test Bed

AWS
Cluster size: up to 52 CPU instances, and 12 GPU instances



Cost Savings
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Inception-v3 OpenNMT-ende

- MArk-ondemand: up to 3.6× savings

- MArk-spot: up to 7.8× savings

Twitter workload

arrival pattern abstracted from real 

time tweets

- MO: MArk with only on-demand instances

- MS: MArk with spot instances

- SM: Sagemaker as a baseline



SLO Compliance
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MMPP: unpredictable, highly 

dynamic workload

Markov-modulated Poisson Arrivals
(MMPP)

What if workload is unpredictable?



Unexpected Load Surge
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Unexpectedly increase arrival rate

- Mark does not rely on prediction accuracy for SLO 

compliance



Conclusion
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• Characterized ML model serving on cloud

o Proposed combining IaaS and FaaS for ML serving

• Designed a cost-effective, SLO-aware system MArk

o Predictive greedy provisioning

o Dynamic batching to exploit accelerators

o Support spot instances  

• Implemented Mark, and evaluated it on AWS

o Up to 7.8x cost reduction



Thank you for coming!
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MArk is open sourced at 

https://github.com/marcoszh/MArk-Project

Find me

Seeking internship opportunities

https://github.com/marcoszh/MArk-Project

