Chengliang Zhangt, Minchen Yut, Wei WangTt, Feng Yan¥
tHong Kong University of Science and Technology

FUniversity of Nevada, Reno

& EEREAS
= THE HONG KONG
Llﬂ) UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Machine Learning Serving - MLaaS

Deploy a trained model on cloud for user requests
* Highly dynamic demand
 Stringent Service Level Objectives on latency

Objectives of serving on public cloud = "tabby cat

e Scale to dynamic queries * Cost-effective

e SLO-aware: e.g. 98% of the

requests must be served
under 500ms

7/11/19 2

Ay g—

Conventional Autoscaling — AWS SageMaker LWJ

e Reactive scaling: based on current load
Provisioning Execution

Time >> Time
Amazon SageMaker (minutes) (<1s)
A Hide provisioning time -> over-provisioning
Request load for
the pink model
/ e.g, in AWS EC2, serving an inception-v3 query is 20,000

times more expensive than redis query

Sagemaker suggests to adjust over-provisioning

e o
0N OROXO; factor from 2

Time

102020,
10204020,

(04

Active backends
for the pink model

7/11/19 [1] https://people.mpi-sws.org/~arpanbg/pdfs/middleware2017_slides.pdf

ML accelerators: GPU, TPU, FPGA

Inference
* Run comfortably without them
* Way less parallelism

* Mass parallel support
e Essential for training complex models
* Expensive

CPU: m5.xlarge: $0.192 per hour

GPU: p2.xlarge: $0.9 per hour
TPU v2: $4.5 per hour

- Choose between CPU and
accelerators
- Justify the price tag

7/9/19 4

Ay g—

U

Characterization: CPU vs. GPU vs. TPU

CPU: 1 vCPU, 2 GB mem; GPU: K80; TPU: TPU-v2] . .
* CPU: no significant benefits for

m= CPU GPU === TPU .
v small instances
L 157 " 30 . * GPU & TPU: benefit substantially
S " = * GPUs can be cheaper, but only
™ 107 > with batching and high
2 o utilization
S 5- 10 2
O —_
[
0 I - — L i I I 0

1 2 4 8 16 32 Better cost- @
batch size] effectiveness
. arger
(a) Incept10n-v3 batch size - Tradeoff
-
queuing delay
7/11/19 >

Numerous Choices on Cloud

Infrastructure as a Service Container as a Service Function as a Service
o

(VMs) (Containers) (serverless comp.)
* Large configuration space: AWS offers - The right service
more than 200 instance types in EC2 alone - Appropriate configuration
e Cost-performance trade-offs
o Preemptable instances (spot market) - Exploit the discounts without
o Burstable instances sacrificing SLO

7/11/19 6

Cloud Services for Model Serving

Pay-as-you-go _@_

Amazon EC2

Infrastructure as a Service

Container as a Service

(laa$) (Caa$)
EC2 ECS Lambda
ML Model $ t(ms) [$ t(ms) | $ t (ms)
Inception-v3 5.0 210 9.17 | 217 19.0 | 380
Inception-ResNet | 9.3 398 16.4 | 411 39.3 | 785
OpenNMT-ende 51.5 | 2180 96.3 | 2280 155 3100

EC2: c5.large; ECS: 2vCPU, 4GB mem; Lambda: 3008MB mem

7/11/19

Combine 1aaS’s cost advantage with FaaS’s scalability

Cos’f

Ay g—

U

‘ Pay for what you use

AWS Lambda

Function as a Service
(Faa$, serverless comp.)

Instead of overprovisioning laas, use FaaS to handle
demand surge and spikes

Scaling ove}head

cost: bar

laaS: Instance Families and Sizes

Ay g—

U

s M1 M2 M3 mm M1 M2 M3
\ - 1.0 4 | 155
34) A :

-0.8§ . 3 L 1.00 GE)
I 0.6 0 4 21 - 0.75 3
- v c
. g 3 B g
1-J I Y- I I S los0®

0 - T T T T 0.2 0- T T T T -0.25

large xlarge 2xlargedxlarge large xlarge 2xlarge4xlarge

(a) c5 instances (b) m5 instances

M1: Inception-v3, M2: Inception-Resnet, M3: OpenNMT-ende.
Price and latency normalized by the value of c5.large

7/9/19

There are 4 families of instance in
EC2:

memory optimized r
burstable t

e general purposem
* compute optimized ce

* The bottleneck is CPU
* Performance grows sub-linearly
with size

|laaS: Spot Instances

* Discounted: up to 75% off, dynamic pricing
* Transient resource: providers can take it back, interruptions

ML serving is * Requests are independent

stateless * The response only depends on the requests

* No consistency requirement

7/12/19 9

Characterization Summary

* Cloud services: laaS is cost-effective, FaaS has the best

scalability

* With on-demand pricing, smaller CPU instances are
preferable, cheaper, smaller scaling step size

* Accelerator batching: important control nob for cost and
latency tradeoff

» Safe to use spot instances

7/9/19 10

Desigh Considerations

Cost-effectiveness Accelerator Support

* To maintain high utilization and hide * Use dynamic batching, batching
provisioning time: workload prediction requests according to arrival rate
+ proactive provisioning and SLO specification

* Use FaaSs to reduce over-provisioning
* Adopt spot instances: online
provisioning algorithm

Batching guideline:

» After batching, SLOs can’t be violated

* The overall throughput should be better
than pre-bathing

7/9/19 11

Ay g—

U

Design Considerations Cont.

35

99% of the requests must complete under 1s w0l - Datafrom trace (bin width = 10) s |
25 |
SLO-awareness 20|

15

10
5 L
0 L Tl IIIII..I..-I-I-

0 50 100 150 200 250 300 350 400
Service Times (ms)

e Overall response time: no closed form solution
ML inference execution time is deterministic

Normalized Frequency (%)

Best effort solution:

Monitor the queuing time for each request,
direct requests to FaaS when necessary

[1] Gujarati, Arpan, et al. "Swayam: distributed autoscaling to meet SLAs of machine learning inference services with

7/12/19
/12/ resource efficiency." Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference. ACM, 2017.

12

Introducing MArk (Model Ark)

e TN <
[—» data flow MArk VY EC2 Cloud Services Lambda
| - -3 controlflow (|) ()
: Batch ® | |on-demand BE
| Ma?w:ger D Load | feauest|[11 | instances @
| eoM «— ||T&] request -
. — ¥ | Balancer responsel| & = I spot aE iy .functlon
| ® S5 @l | <«—— || Instances
| t4> | | | 0O o | InStanceS response
, reques TTe-s : provision|| % 3 || ®
| aillel e /Oadrn | Proactive | & i @ [,/ | burstable BE
' etrj ntroller | <¢---_- -

: e Ic C(A) .O O | btk \ : instances
! Monitor |--.2addins - D check I, warm up A |
_ _ _ T IITITTITTIN I TITITTITTITITTITITTITL o

* Weighted round robin for load balancing * Nginx and Gunicorn for admission and

e Server front implemented with Sanic parallelism control

framework e Support for spot instances
* Support TensorFlow Serving, MXNet Model e Can be ported to all popular cloud platforms

Serving, and other custom servables

7/11/19 13

Ay g—

U

Proactive Provisioning

- MArk: plug any predictive algorithm that best suits the workload

Heterogeneous Cluster

. : : A ilati f M/D
Deterministic processing time — compilation of M/D/c No closed form

Assume Poisson arrival , queues solution
Heuristic: Greedy Provisioning o
=
S
* Expose long-term trade-offs -
* Find the cheapest instance: the # of % ’
requests to serve / (charge by the 3 1 instance j
min. + launch overhead) % T .
L Instance |

v

7/10/19 time 14

Evaluations Setup

Test Models

Model [Type |Framework _|Sie
Inception-v3 Image Classification Tensorflow Serving 45MB
NASNet Image Classification Keras 343MB
LSTM-ptb Language Modeling MXNet Model Server 16MB

OpenNMT-ende Machine Translation Tensorflow Serving 330MB

Test Bed

AWS
Cluster size: up to 52 CPU instances, and 12 GPU instances

7/12/19 15

Cost Savings

5000

4000 -

3000

= truth
—— predicted

2000

arrival pattern abstracted from real

200 250 300 350

Twitter workload

time tweets

- MArk-ondemand: up to 3.6x savings
- MArk-spot: up to 7.8x savings

7/9/19

400

Ay g—

U

MO: MArk with only on-demand instances
MS: MArk with spot instances
SM: Sagemaker as a baseline

I Instance

I Instance

Lambda Lambda

MO MS SM MO MS SM
Serving Option Serving Option

Inception-v3 OpenNMT-ende

16

SLO Compliance

CCDF (%)

Latency complementary cumulative distribution function

100 =

Sagemaker

31.72-————-—-———-——- - KA:L
3.8 —"———————-————- N
0881 ————5 |

|
I
0014 _i
|
I
I
100 600
latency(ms)
Inception-v3

7/9/19

MMPP
Sagemaker
Twitter

= MArk Twitter

MArk MMPP

4000

= truth
- predicted

3000

2000

1000

Sb 160 150 260
Markov-modulated Poisson Arrivals
(MMPP)

What if workload is unpredictable?

MMPP: unpredictable, highly
dynamic workload

17

Unexpected Load Surge

250 . :

m —— 75% SageMaker 7 3004 —— 100% MArk

£ 2009 —«— 75% MArk £ —¢ 100% SageMaker

> >

O | O |

§ 150 - : § 200 - :

© I © I

o 100 - ! v |

e | 2 100 -

o 50 - o

> >

© ©

0 T T T T O T T T T
0 10 20 30 0 10 20 30

time slot (min) time slot (min)
75% surge 100% surge

Unexpectedly increase arrival rate
- Mark does not rely on prediction accuracy for SLO

compliance

7/9/19 18

* Characterized ML model serving on cloud

o Proposed combining laaS and FaaS for ML serving

* Designed a cost-effective, SLO-aware system MArk

o Predictive greedy provisioning
o Dynamic batching to exploit accelerators
o Support spot instances

* Implemented Mark, and evaluated it on AWS

7/9/19

o Up to 7.8x cost reduction

E{D

19

Thank you for coming!

MArk is open sourced at
https://github.com/marcoszh/MArk-Project

Find me

DD
=

Seeking internship opportunities

7/9/19 20

https://github.com/marcoszh/MArk-Project

