MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference Serving

Chengliang Zhang, Minchen Yu, Wei Wang Feng Yan
HKUST University of Nevada, Reno

Background and Motivation Characterization Highlights

. Cost
1. Why a dedicated system for ML Inference? 4. 1aaS vs CaaS vs FaaS >
ML serving has m.any distinct properties: e laaS has the lowest cost and latency, but new
* compute Intensive, instances takes minutes to launch.
e deterministic processing time; e FaasS scales well, but it is expensive with long
e can benefit from hardware accelerators, e.g, GPUs, TPUs; latency. -
e stateless. e CaasS offers the middle ground. Scaling overhead

* Combine the cost-effective laaS and the scalable FaaS.

2. Design objectives

e serve ML inference on public cloud;
e scale quickly to dynamic queries;

5. CPU vs GPU vs TPU

o cost-effective; - or Lt
e SLO-aware. e High utilization is required to justify the =~ 15- 0
high cost of GPUs and TPUs S 0=
e Judicious batching is needed G 9
e GPUs can be cheaper than CPUs 2 5- 10 £
Challenges: | | e TPUs are not suitable for inference 11 B
e Which cloud services to use, Infrastructure as a Service (laaS), o L= il W0 BRI
Container as a Service (CaaS), or Function as a Service (FaaS)? Poe S0 0
e How to navigate through the large configuration space? * Predict workload to maintain high
e How to leverage cost-performance tradeoffs such as preemptable utilization The cost and batch latency of serving 1
instances and burstable instances? million inception-v3 inference requests
* Judicious batching to navigate the with various batch sizes.
tradeoff between cost and latency
- datatlow MACK EC2 Cloud Services Lambda
S - control flow | |
i €) ' | on-demand |back ;
i Batch 9 request | | instances |end D i
i Manager 4t Load ol i
i (e Balancer | . _a request . i
| response|| @ L spot back g function |
| I acC . |
- @ o instances | |
| N 6) o o | | | instances end - |
! ® 5 || response |
- request o AN |
; , Sroact provision ® | | B |
i queue Oqq . CrOiC Il}le ---------------- - i | burstable |back |
; St e . | instances | end ;
| SLO P health i |
i Monitor | addinstance | | check - warm up o i
System Design —— MRKTWT SM TWT MRK MP —— SM MP |
C 3 E— T H007 | |
6. MArk (Model Ark) system design SLO compliance: . 3;23:—&:\ o
euses laaS (EC2) as the primary means of service; As shown, MArk retained SLO 8 ooty |8
eemploys FaaS (Lambda) to cover load spikes; compliance, with both real life I I R
euses proactive provisioning, planing instances based on prediction; and synthetic workloads. atencylmg) atency(me)
edynamically batches requests according to instance types and request (a) inception-v3 (b)ResNet50
arrivals; CCDF of latency for MArk and SageMaker, MRK and SM
etracks SLO compliance, and launches burstable instances when represents MArk and Sagemeker, while TWT and MP
represents Twitter and MMPP workload respectively
needed.
Evaluathn nghllghts 75250 50%: MArk 75250 —— 75%: SageMaker
7. What about performance? N Microbenchmarks:
Cost savings: Z»fzm ;122Mm We applied sudden demand
Zz- B Instance 80_ B Instance 14 4 MW Instance % 0 ; T T % 0 - ; T T Surges On MArk and depiCted
70 ambde 60 - ambae 127 e ° tligne sIot(rr21i?1) » ° tli?ne slot (rr21i(:1) » the reSUH:S In (a) - (C)
giz 5] 21:: (a) 50% surge (b) 75% surge
& g 5 300 100% MArk 5 240- , — .| We interrupted up to 80% of the
o iﬁ. I - oo | g0] .| instances in a 20 machine
"Two s sm T - af o N s ﬂ 80 s :‘L /\«»» cluster, and depicted the results
(a) Inceptgiopn—v?) (b) Nagl\plet (c) LSTM—ptb (c) OpenNMT % o : %160- i in (d).
Cost ($) comparison of MArk-ondemand (MO), MArk-spot (MS), and SageMaker (SM) K tl,?ne slot (,ﬁ;?]) N ti%meéslsltl(rlrlw:-)i’n}IS 71
(c) 100% surge (d) interruptions

eUp to 3.6x cost reduction with only on-demand instances.
eUp to 7.8x cost reduction if spot instances are considered.

MATrK is open sourced at: https://github.com/marcoszh/MArk-Project

